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INTRODUCTION 

The chemistry of casein has been studied extensively 

since the mid eighteen hundreds. The development of new 

techniques during the last thirty years, especially, ultra-

centrifugation, moving boundary electrophoresis, gel electro­

phoresis, and gel filtration, have added greatly to our 

knowledge, if not to our understanding of the calcium 

caseinate-phosphate complex. These newer techniques have 

allowed scientists to advance in a number of directions. 

However, only a small portion of the more recent literature 

deals with the intact or moderately treated complex. 

The objectives in this Investigation were to study the 

calcium caseinate-phosphate complex in a condition as closely 

approximating its native state as possible and to attempt to 

reconcile some of the discrepancies in the literature con­

cerning the dependence or independence of casein micelle 

composition and g-casein concentrations) on micelle size. 

The dependence or independence of the amounts of 

calcium-sensitive (ccg-casein), calcium-insensitive 

(%-casein), and p-casein on micelle size, was studied using 

urea- and urea-2-mercaptoethanol starch-gel electrophoresis. 

During the final phase of our investigations. Rose 

(1965) published material that had been presented at a 

symposium at the 59th Annual Meeting of the American Dairy 

Science Association, in June 1964. He reported a somewhat 
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similar approach using analytical and physical chemical methods 

rather than urea and urea-2-mercaptoethanol starch-gel 

electrophoresis of the calcium caselnate-phosphate complex. 
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REVIEW OP LITERATURE 

The Investigation of casein and "native" caseinates is 

Important not only because of their nutritional importance but 

also because some problems such as gelation in some concentrated 

products cannot be solved until more information concerning 

the native milk proteins is available. The proteins of milk 

have been the object of extensive research. Casein^ the most 

important of the milk proteins, and the calcium caseinate-

phosphate complex have received most of the attention. 

Despite our increased knowledge of the complex and the improved 

research equipment and techniques, the nature of the colloidal 

phosphate and citrate salts and their association with 

calcium caseinate has defied elucidation and many conflicting 

data have been reported. 

Casein has been the object of extensive research since the 

mid eighteen hundreds. The fact that the composition and 

properties of preparations of acid casein (Hammarsten_, I883) 

were surprisingly constant led to the assumption that casein 

was a single protein. The work of Osborne and Wakeman (1918) 

and later that of Linderstrom-Lang and Kodama (l925)j employing 

extraction and precipitation methods, found that it was possible 

to fractionate casein into products having divergent composi­

tions and properties. Since the work of Linderstrom-Lang, the 

heterogeneity of casein has been extensively investigated. 

The development of the Svedberg ultracentrifuge and the moving 
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boundary electrophoresis apparatus of Tiselleus added impetus 

to these investigations. Mellander (1939)j in a classical 

paperJ demonstrated the heterogeneity of casein by moving 

boundary electrophoresis; the three fractions obtained were 

designated a-, g-, and y- in order of their decreasing mobil­

ities. The outstanding chemical difference between these 

fractions is their phosphorus content. Phosphorus values^ 

recently presented, are, in g/lOOg: a-casein, 0.99j p-casein, 

0.61, (Gordon _et aJ., 194-9) and y-casein, 0.11 (Gordon et al., 

1953). 

Following the work of Mellander (1939)j these fractions 

(a-J 3-, and y-casein) and a few additional ones, have been 

characterized and numerous methods of isolation have been 

reported. These data have been reviewed by the Nomenclature 

of the Proteins of Bovine Milk Committee, (Brunner et al., 

i960, Jenness _et ., 1956, and Thompson _et _aJ., 1965) . 

In the remainder of this review, the molecular weights of 

the caseins, caseinate micelle size distribution and caseinate 

gel compositions are considered. In addition the relationship 

between the size of the caseinate micelles and their a-casein: 

p-casein ratios will be discussed. 

Molecular Weight of Casein and Its Components 

The molecular weight of casein was first estimated by Van 

Slyke and Bo8worth (l913a, 1913b) from the sulfur and phosphorus 

contents. These workers found 0.72^ sulfur and 0.71^ phosphorus 
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in a sample of c_.8ein. They assumed one atom of each of these 

elements in the original protein and arrived at a molecular 

weight of 8888, Their method of preparation was questioned by 

Harden and Macallum (1914) who indicated that hydrolytic 

cleavage of the sulfur and phosphorus had taken place. 

Carpenter (1926)^ subsequently showed that there is consider­

able cleavage of nitrogen from the casein molecule using the 

Van Slyke and Bosworth procedure. Pauls and Matula (1919) 

calculated the valency of casein as 3 and concluded, from base-

binding data, that the molecular weight was 3000. Yamakami 

(1920), using a method which compares solutions of equal vapor 

pressure, concluded that the minimum molecular weight was 

about 4000. Cohn_et al. (1925) evaluated the molecular 

weight from the amino acid content. On the basis of one 

molecule of cystine per molecule of casein, the minimum 

molecular weight was calculated to be 96,000. However, 

because of the difficulty in reconciling the tryptophan content 

with the above figure, they decided on the value 192,000. 

Burk and Greenburg (1930), employing isoelectric casein in 

urea solutions, calculated from osmotic pressure data a mole­

cular weight of 33,600 + 250 for casein. More recently, 

D'yachenko and Vlodavets (1952), using a light .scattering 

method, calculated the molecular weight of casein to be 

30,000. However, the method of preparation of their casein 

resulted in complete removal of g-casein (Warner, 1944). In 
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a subsequent paper, D'yachenko and Vlodavets .(l95^)j using a 

differential light scattering apparatus, reported that the mean 

particle weight of casein in skim milk to be from 266-780 

million. 

The Introduction of the ultracentrifuge by Svedberg 

provided a new means of determining molecular weights of 

proteins. Svedberg et al. (1930a), using the sedimentation 

velocity method, found that casein was polydispersed which 

greatly increases its complexity. They found that the acid-

alcoho'l soluble protein (Linderstrom-Lang and Ko dama, 1925) 

extracted from casein prepared by the Hammersten method was 

homogeneous and had a molecular weight of 375,000 + 11,000. In 

a subsequent paper, Svedberg _et aJ.. ( 1930b ) found that casein 

prepared by the Van Slyke and Bosworth (l913a) method was also 

heterogeneous; a constant mixture of the various components 

could not be obtained. The bulk of the crude casein had a 

molecular weight between 75,000 and 100,000. Carpenter (1931) 

subsequently found 98,000 apparently to be the correct value. 

Subjecting the crude casein to a temperature of 40 C, during 

dispersion in the buffer solution, resulted in a casein having 

a molecular weight of 188,000 by the sedimentation equilibrium 

method. No molecules of molecular weight between 75,000 and 

100,000 remained after this treatment. Pedersen (1936), 

using a salt concentration of 0.25 M vs 0,017 M used by 

Svedberg _et aJ.. ( 1930a, 1930b), obtained higher sedimentation 
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constants which he attributed to the higher salt concentration. 

Pedersen used milk ultrafIltrate as a buffer In one experiment 

with milk serum (obtained by subjecting skim milk to the action 

of a centrifugal force of 100,000 x for "some minutes") and 

identified one major constituent (q,- and p-caseln); minor 

components were difficult to Identify because of the refractive 

index gradient caused by sedimentation of the large amount of 

lactose. Attempts to take light absorption pictures failed. 

Warner (1944) separated a- and p-caseln. Subsequent 

investigators have dealt primarily with the separation and 

analysis of the various components of casein and the inter­

action among these components. Cherbuliez and Baudet (l950) 

estimated the minimum molecular weight of their a- and p-caseins, 

on the basis of tyrosine, tryptophan and phosphorus contents, 

to be 130,000 and 48,000, respectively. From the phosphorus 

content of a-casein, Perlmann (1954) suggested a minimum mole­

cular weight of 31^000. Sullivan _et (1955), using centri­

fugal methods, investigated the Influence of temperature and 

electrolytes upon the apparent size and shape of a- and 

p-casein. They concluded that p-caseln has a molecular weight 

of 24,100 below 15 C and has a marked tendency to form aggre­

gates at room temperature. a-Caseln was found to have a 

molecular weight of 121,800 and its aggregation was dependent 

upon Ionic strength rather than temperature. Von Hippel and 

Waugh (1955) determined that at a temperature near 0 0 and 
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pH 12, unfractlonated soluble casein (soluble casein in 

equilibrium with micellar casein and readily soluble at pH 

7.0) dissociates into monomeric units with an average molecular 

weight of 15JOOO. The a-casein monomer probably lies in the 

range of 13,000 to 15,000 and the P-casein monomer in the range 

of 15,000 to 2^,000, Waugh (1958) subsequently reported a 

molecular weight of 23,300 for ttg-casein (calcium sensitive) 

and 16,300 for ^.-casein (calcium insensitive). However, the 

a fraction was said to be 95^ pure and the ^-fraction 90^ 

pure. The above values for the molecular weight of the various 

casein components have been questioned by McKenzie and Wake 

(1959c). They state that the ease with which a- and 3-casein 

aggregate have affected the results reported by various workers 

using "pure" fractions. In addition, the a-casein used by 

workers before 1956 could have been contaminated with the 

recently discovered ^-casein (Waugh and von Hippel, 1956). 

McKenzie and Wake (1959c) obtained a molecular weight for 

a-casein of 24,800 by sedimentation and diffusion measurements 

at pH 11, 25,000 by the Archibald (19^7) method at pH 12, and 

27,600 at pH 7 in 6 M urea. g-Casein was found to have a 

molecular weight of 17,300 by sedimentation and diffusion 

studies in glycine buffer at pH 11.0, and 19,800 in 6 M urea 

at pH 7.2. A preliminary value of 26,000 + 3000 was obtained 

for %-casein. Nielsen (1959) obtained the following molecular 

weights for caseins dissolved in 6.66 M urea solution: acid 
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precipitated casein 25,700, calciim precipitated casein 

29,800, calcium precipitated a-casein 27,800, and calcium 

precipitated p-casein 23,100. The molecular weights for the 

whole casein are number averages while those for a- and g-

casein are minimal, due to the strong disaggregating effect of 

urea on proteins. The discrepancies noted, prior to 1956 for 

a-casein, have been explained by McKenzie and Wake (l959c) 

as resulting from contaminated fractions. More recently, 

Swaisgood and Brunner (1962) reported a molecular weight of 

29,000 using guanidine hydrochloride (5 M) at pH 5.0, urea 

(7.0 M) at pH 8.5, 33 and 66^ acetic acid. They calculated 

the weight of the light component. Since previous molecular 

weight studies on n-casein were conducted in phosphate buffer 

(pH 12) and Jolies ̂  a^.. (1962) found cystine present, 

Swaisgood and Brunner (1963). suggest that the high pH may have 

catalyzed the cleavage of the disulfide bonds resulting in 

low molecular weight fragments. Evidence is given supporting 

this hypothesis and indicating that the basic monomer of 

%-casein consists of two or more polypeptide chains which are 

cross-linked by disulfide bonds. 

. The total number of casein components present in milk is 

not known. According to Waugh _et (1962), there are 8 com­

ponents, Wake and Baldwin (1961) have observed as many as 20 

components, Waugh et al. (1962) state that, at this time, it 

seems reasonable to assume that at least the four most abundant 
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caseins (ag^-casein, agg-oaseln, p-casein and ^-casein) are 

primary caseins (y-oaseln is not mentioned). The ag-caseins 

are defined by Waugh _et al. (1962) as the caseins which 

interact with ^-casein in appropriate weight ratios, to form 

complexes in the absence of divalent cations and, after rennin 

action, the micelles clot in the presence of divalent cations. 

The ttg-caseins can be resolved by starch gel electrophoresis 

in the presence of 6.5 M urea yielding two bands, and 

ttgg'^asein, at pH 3.2, 4.3 and 8.4. -Casein has the 

greater mobility at pH 8.4. The average molecular weight of 

and calculated from the tryptophan released 

by carboxypeptidase A, is 27,000 to 27,500; that by osmotic 

pressure in 6.5 M urea at pH 4.5 is 26,900 + 2000. Dreizen 

_et _al. (1962) reported a molecular weight of 27,300 + 15OO 

at pH 12 by a light scattering method. 

The existance of Y-casein, obtained (and called Y) by 

Mellander (1939)^ was at first in doubt. It was thought to be 

a boundary abnormality. However, subsequent separation 

techniques have confirmed its existance. The percent of total 

casein reported as Y-caseln has been from 3 to but very 

little has been reported on its chemical and physical properties 

(except for phosphorus content). Murthy and Whitney (1958) 

report that the y-caseln peak in electrophophoretic patterns' 

of skim milk at pH 8.7 is made up of three proteins (Y-caseln, 

pseudoglobulin, and euglobulin). The molecular weight of 
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Y-casein In veronal buffer (pH 8.7) was found to be 30,650 

and in glycine HOI buffer at pH 2.3j 537,000. 

Numerous sedimentation and diffusion coefficients have 

been reported for casein and its components as a result of 

molecular weight determinations. Since these coefficients 

depend upon experimental conditions such as pH_, concentration 

and type of buffer usedj they will not be covered. 

Particle Size Distribution of the Oaseinates 

The particle size distribution of the caseinates in skim 

milk is of interest. Reports are not nearly as numerous as on 

other aspects of milk protein research. This probably results 

from the consistent results that have been obtained using a 

number of methods. 

The determination of particle size distribution of casein­

ates in skim milk seems, at first glance, to be difficult 

because of the opacity of skim milk and because dilution of 

skim milk with water results in disaggregation of the caseinate 

particles (micelles). Particle size distribution of iso­

electric casein is of minor interest because of artificial 

aggregation and will not be discussed. The calculation of 

particle size is possible from sedimentation data obtained in 

the determination of molecular weightsj however, a majority of 

the molecular weight determinations have been performed on 

isoelectric casein and-these calculations (for determining 

particle size) are of little value. 
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Nichols aJ.. (1931) minimized the disaggregating effect 

of dilution by employing skim milk ultrafiltrate as a diluent. 

They determined the particle size distribution by diluting skim 

milk (obtained by separating whole milk at 40 C) to 1/5 its 

original concentration and measuring the effect of centrifuga-

tlon at 4000 rpm. (g force not given) by the light absorption 

technique. The estimated mean diameter was 90 mia with most of 

the calcium caseinate particles being less than 200 m|j.. A 

smaller amount of coarse material^ probably colloidal calcium 

phosphate and larger aggregates of calcium caseinates^ was also 

reported. 

The increased use of differential ultracentrlfugatlon 

(serially depleting the caseinates) to fractionate "Native" 

caseinates has led to newer methods for determining particle 

size distribution. De Kadt and van Minnen (19^3), using 

"Tyandall light" on skim milk and caseinate gels diluted to a 

casein concentration of 0.03^, demonstrated that resuspended 

caseinates contained particles larger than those in the 

original milk. The development of light scattering techniques, 

primarily by Russian workers, and the use of the electron 

microscope, coupled with the demonstration by Nitschmann 

(1949) and Hostettler and Imhof (1952) that the addition of 

0.3$ formaldehyde to skim milk and then holding overnight at 

4.0 C prevented the dlsintergratlon of the micelle when milk 

subsequently was diluted, gave impetus to additional work 
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on particle size. 

Nitschmann (19^9)} using formalin and the electron mlcro-

scope, obtained the following results: 

diameter in mp. ^ of Total 

a^ b^ 

40-80 20.8 32 
80-120 33.5 34 
120-160 23.3 23.7 
160-200 13.9 8.0 
200-400 4.5 2.0 
240-280 2.0 0.4 

Hostettler and Imhof (1952), using a similar technique with 

a 1:300 dilution, obtained the following results : 

diameter in m^ ^ of Total 

' .-V33 20.3 
' 33-66 29.5 
66-100 29.1 
100-133 14,0 
133-166 4.9 
166-200 1.5 
200-233 0.3 

The largest particles found In the separator slime after 

separation of milk measured up to 800 mjj. D'yachenko (1953) 

estimated the average size of casein particles in milk as being 

^Casein precipitated with 0.01 M CaClg, diluted 1:200. 

^Skim milk, formalin treated, diluted 1:200. 
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100 to 120 m|a using ultrafiltration^ ultracentrlfugatlon and 

the electron microscope. In a subsequent paper^ D'yachenko and 

Vlodavets (1954) reported a mean diameter range for casein 

particles in skim milk as 86 to 123 mp.. More recently, 

D'yachenko _et a2. (1955using the method described by 

Nitschmann (1949) and the dilution (l:300) used by Hostettler 

and Imhof (1952) obtained the following results: 

diameter m|a % of Total 

Yusa (1956) reported that no change in the shape of the casein 

particles was observed with temperature to 100 C for 30 min^ 

but above that temperature the casein particles tended to 

aggregate. This is in agreement with Nichols _et a^. (1931) 

who found that preheating to 95 C had little effect on particle 

size distribution. 

Prom the above data, it appears that the particle size 

distribution is somewhat restricted. The agreement among 

results especially between D'yachenko et . (1954) and 

Hostettler and Imhof (1952), is quite good. However, the slight 

difference obtained when a 1:200 dilution jvs. a 1:300 dilution 

is used, suggests a dilution effect. D'yachenko _et a2. (1934) 

pointed out that wet casein binds 0.69g of water per g of 

40 
4o-8o 
80-120 
120-140 

30 
30 
30 
10 
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casein and formalin treated casein only 0.55 g. This suggests 

that the use of formalin^ to prevent micelle size changes on 

dilution, may slightly shrink the natural micelles, and make 

them appear smaller than they actually are in milk. If this 

were true, the data of Nichols _et aJ.. (1931 ) may more closely 

represent the conditions of casein micelles in the skim milk. 

Ford and Ramsde11 (19^9) studied the molecular weights 

and micelle-size distribution of the calcium-caseinate-

phosphate complexes. They found, by a differential centri-

fugation technique, that the smallest particle (basic "unit") 

had a sedimentation coefficient, S, of 179 x 10~^ and was 64 

mii in diameter, with an apparent molecular weight of 33 

million. The dominant particle, about 30^ of the total 

colloidal protein, had an S value of 1150 x 10~^^. Assuming 

that all the unit particles are spherical, they concluded 

that the larger particles must be made up of l6 "units"; 

the calculated diameter of this particular aggregate was l68 

m|j. with an apparent molecular weight of 530 million. The 

largest particles observed, S = 4950 x 10~^^, had a calculated 

diameter of 348 m^ and an apparent molecular weight of 4.3 

billion. They concluded that the colloidal particles in skim 

milk have a limited number of sizes and the size distribution 

varied as a result of concentration changes of caseinates 

left in the supernatant during centrifugation. 
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Composition of Caselnate Ultracentrlfugal Gel 

While the mineral composition of milk has been known for 

many years^ the exact mode of combination of the Individual 

acid and base constituents still requires elucidation. This 

discussion will be restricted to colloidal calcium phosphate 

and the calcium and phosphate associated within ^e caseinate 

molecule. The above are commonly referred to as the calcium 

caseinate-calcium phosphate complex or caseinate complex. The 

early work concerning the complex dealt chiefly with two 

separate areas, namely: 

1. Is the colloidal calcium phosphate a dl or tri calcium 

phosphate? 

2. Is the colloidal calcium phosphate absorbed or 

chemically linked to the calcium caseinate? 

Both questions have been studied extensively. Conflicting 

data and interpretations have been advanced for both sides of 

each question. The early work of Pyne (1934) and Ling (1936) 

refuted the contention of Van Slyke and Bosworth (1915) 

that the colloidal calcium phosphate In milk was dicalcium 

phosphate. Pyne (1934) found that addition of potassium 

oxalate lowered the titratable acidity of milk and reasoned 

that neutral colloidal trlcalclum phosphate was converted into 

dissolved tri potassium phosphate having an alkaline reaction. 

The lowering corresponded to about 0.76g of calcium per liter 

of milk which was in agreement with Porcher and Chevallier 
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(1923). Analysis (Pyne_, 1934) of synthetic calclim caselnate-

calclum phosphate systems and. their ultrafiltrates indicated 

that dicalcium phosphate would occur among the soluble salts 

and tricalcium phosphate among the colloidal constituents. 

Eilers _et a^. (19^5) reached the same conclusions from 

potentiometric titrations. Ling (1936) developed a method of 

estimating tricalcium phosphate in milk using titrations of 

oxalated and non-oxalated milk and whey. He concluded that 

tricalcium phosphate was the major colloidal calcium phosphate. 

Pyne and Ryan (1950) modified Ling's procedure and concluded 

that tricalcium phosphate comprised about 88^ of the colloidal 

phosphate. Davies and White (1960) obtained a value of 70$ 

and indicated that the composition of the phosphate varied 

greatly in different milks, Tney reported tnat Evenhuis. in 

a personal communication, suggested that the colloidal calcium 

phosphate may be entirely in the tricalcic form. Pyne and 

McGann (1960a), employing a new technique (colloidal phosphate-

free milk, obtained by a controlled acidification to pH 4.8 

to 5'Oj followed by dialysis against the original milk)^ 

suggest that the_so-called colloidal phosphate of milk should 

be more properly termed a colloidal phosphate-citrate complex. 

This colloidal calcium phosphate-citrate component behaves as 

though it possessed the approximate imperical formula of the 

hypothetical citrate-apatite 3 Ca^(P02^)2 Git" . Prom the 

overwhelming amount of circumstantial evidence, i.e., calcium: 
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phosphate ratios and oxalate titrations, it must be concluded, 

until other evidence is forthcoming, that the colloidal calcium 

phosphate is made up primarily of tricalcium phosphate. 

The second question, nature of the association between 

calcium caseinate and the colloidal phosphate, however, is a 

much more difficult problem to solve. The evidence at this 

time, seems to favor a chemical union. However, no conclusive 

evidence has been presented. Pyne (1934) was one of the early 

proponents of a double-salt union in the complex. Ling (1936) 

favored a physical "protection" of colloidal phosphate by the 

caseinates. Van der Burg (19^7), employing yeasts as an 

adsorbing agent, and ter Horst (1947) in a review tend to favor 

Ling's interpretation. Evenhuis and De Vries (1955, 1956a, 

1956b;, 1956c, 1957) concluded that the titration of oxalated 

milk could not be used to support the chemical union concept 

and that neither the use of yeast as a transferring agent nor 

the Ling titration could be used to support a physical 

adsorption concept. McGann and Pyne (1960) and Pyne and 

McGann (1960b), employing their colloidal phosphate-free milk 

to overcome the objections to the oxalate titration, concurred 

in Pyne's earlier concept of a chemical union. Schipper 

(1961), working with a sythetic complex, obtained no definite 

solution to the question, but considered that he proved that 

the presence of a double salt, as well as the independent 

binding of calcium and phosphate ions to the casein cannot be 
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of major importance, As can be seen above, the nature of the 

bond between colloidal calcium phosphate and calcium caseinate 

has not been resolved. 

The development of preparative ultracentrifugal equipment 

has resulted in numerous papers on the composition of the 

calcium caseinate complex in milk, because it affords a means 

of obtaining the complex in practically its native state. 

De Kadt and van Minnen (1943), using the Sharpies super-

centrifuge, obtained several fractions of calcium caseinate 

by differential centrifugation and performed a number of 

analysis on the unwashed sediment and supernatants. They found 

that 0.55 g of water per gram of casein was bound water. They 

obtained slightly more calcium and phosphate with the first 

than With subsequent fractions and reported that the calcium: 

phosphate ratio (after subtracting the ester bound phosphate 

in casein) was 3:2. They concluded that the colloidal calcium 

phosphate is chemically linked to the casein and suggest the 

following as possible structures: 

Casein - = Ca Cag(P02j^)g 

or 
- Oa - POh = Ca 

Casein - POj. 
^ - Ca - POn = Ca 

Ramsdell and Whittier (19^4) analyzed the water-washed, 

casein-containing colloids, obtained by ultracentrifugation. 

They reported that the complex contained 4.80^ Ca^(P02^)2 and 

95.20^ calcium caseinate. They concluded that their analyses 
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compare suprlslngly well with analyses of Isoelectric casein 

although their sulphur and phosphorus values were somewhat 

higher than values reported, in the literature for casein 

(no specific references were given) repeatedly peptized and 

reprecipitated. Hostettler _et _al. (1949) using an angle 

centrifugedj separated 2/3 to 3/4 of the-casein colloid of 

milk into 5 fractions. Their analysis of sedimented fractions 

indicate a decrease in the calcium and total phosphorus from 

the largest particles to the smallest. However^ they started 

with whole milk which would contain all of the very large 

particles. Ford _et a^. (1955) fractionated the complex by 

differential ultracentrifugation and removed 75-90$ of the 

casein. They obtained an organic phosphorus (OP): casein 

nitrogen (CN) ratio of O.O563 and concluded that inorganic 

phosphorus (IP) decreased with decreasing particle size 

except that, for the smallest particles removed, a definite 

minimum proportion of inorganic phosphorus is indicated such 

that the molecular proportion of calcium: organic phosphorus: 

Inorganic phosphorus is about 5:2:2. This ratio suggests a 

combination of two moles of calcium caselnate with one mole 

of tricalcium phosphate which is the inverse of that suggested 

by de Kadt and van Minnen (194-3). Ford _et al. (1955 ) also 

concluded that the complex, in fresh untreated skim milk, 

appears to exist as a single phosphoproteln, which is probably 

a definite mixture with fixed ratios of a-, |3- and Y-caseins. 

The organic phosphorus : casein nitrogen ratio is in close 
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agreement with that of a mixture of these caseins in the 

proportion l6:4;l. In a subsequent paper. Ford and Martinez-

Mateo (1958) investigated the compositions of the non-

sedimented (whey-soluble) caseinate and found the same 

organic phosphorus: casein nitrogen (OP:CN) ratio for these 

smallest particles as for the remaining caseinate particles. 

More recently, Bohren and Wenner (1961) reported a OP:CN 

ratio of 0.045 and 0.044 for whey soluble casein obtained by 

centrifugation at 20 and 4 C respectively vs. an 0P:CN ratio 

of 0.054 for the sedimented caseinate fraction. Tsugo _et al. 

(1962), employing differential centrifugation, fractionated the 

complex and studied the effect of temperature, pH, heating 

(95 C, 30 rain) and CaClp precipitation on the composition of 

the sedimented complex. They report a decrease, in the 0P:CN 

ratio, in the sedimented caseinate when the centrifugation 

temperature was reduced from 26 to 4-7 C. 

The studies presented indicate that the data and inter­

pretations are conflicting concerning the natural caseinate-

complex in milk obtained by differential centrifugation. The 

problem of determining the composition of the sedimented 

complex is not a difficult one from the standpoint of analytical 

techniques. However, the composition of the adsorbed and 

occluded liquid (whey) is not known. This means that assump­

tions have to be made concerning this liquid, and, as a result, 

reported analytical data are only close estimates of the true 
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composition and. will vary depending upon the assumptions made 

and the amount of liquid involved. Since inferences have been 

made from ratios of various constituents in the sediment, these 

assumptions may be critical. 

The data concerning the amino-acid contents of the various 

caseins is scanty. Gordon _et aj.. (l9^9, 1953) have reported 

the amino acid compositions of a-, 3-snd y-casein but the 

sequential arrangement of these amino acids in casein is 

unknown. Swaisgood and Brunner (1963) reported the amino 

composition of %-casein. Gordon and Basch (1963) reported the 

amino acid composition of a^-caseln. In a review. Ling (1956) 

Indicates that from casein hydrolysates, serine, threonine 

and arglnlne have been found to be attached to phosphorus, 

indicating that phosphorus is combined to these amino acids as 

an integral part of the casein molecule. Proteolytic enzymes 

have released a number of phosphopetones from casein. They 

show considerable differences in amino acid composition but 

seem to have phosphoric acid esterlfled to serine or threonine 

with the adjacent amino acid being dicarboxyllc, generally 

glutamic acid frequently followed by leucine or isoleucine 

(Ling, 1956). Perlmann in a series of papers (reviewed by 

Perlmann, 1955) using specific phosphatases, reported that the 

_phosphorus in a-caseln was linked 40$ as the monoester, 

-0-P0(0H)g, 40^ as the "diester" (20# as -0-P0(0H)-0- and 

20^ -O-PO(OH)(NH-), Perlmann, 1954) and 20^ as pyrophosphate. 
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-O-PO(OH)-O-PO(OH)-. p-Casein was found to contain dlesters 

of the -O-P-0- type as contrasted to the -O-P-0- and -NH-P-0-

(Perlmann, 1954) diester types of a-casein. Unfortunately 

^-casein was unknown when this work was completed' Osterberg 

(1961) reported that the phosphorus linkages in ^-casein were 

monoesters with six phosphate groups linked to serine residues 

and one to a threonine residue which is not in agreement with 

Perlmann (1954). Belec and Jenness (1962), working on the 

"dephosphorization" "by heat treatment in caseinate solutions 

concluded that the phosphodiester of the type -N-P-0- as 

proposed by Perlmann (1954), may be considered absent in 

casein. If Osterberg (I961) and Belec and Jenness (1962) 

are correct, arginine would not be considered to be linked to 

phosphorus in caseins. 

Recently, Aiyar and Wallace (1964) propose that casein 

contains -N-P-N- type bonds which are hydrolyzed by the action 

of rennet. They suggest that the phosphorus is attached to the 

guanido groups of arginine. 

The nature of the association of calcium within the 

caseinate micelles has received little attention. Manson 

(1962) concluded from his work that there are two types of 

calcium linkages. The stronger is postulated as linking 

Qg-, 3-, and ^-caseins in constant proportions, which, 

according to Manson is consistent with the data of Waugh 

(1958) but not with those of Sullivan ejt al. 
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(1959) who reported different amounts of casein in caseinate 

fractions obtained by differential centrlfugatlon. The weak 

and more readily accessible calcium bonds Manson considers to 

be responsible for the loose combination of primary units into 

micelles of varying sizes, but of constant composition. 

Klrchmeier (1960), proposed the following structure for casein: 

P0_^ = Ca 

(+) (-) (-) (+) 
Ca-Caseln-NHo:Ca:HoN-Casein-COO-\ 

^a 
Caseln-COO-Ca-PO^-serine-casein-COO^ 

Relsfeld (1957) concluded, from his work on the calcium-

binding properties of casein, that free carboxyl groups, 

Zwltterlon forms of Imidazole and guanldinlum and phosphoric 

acid esters were the primary calcium-binding sites of casein. 

The internal structure of casein is essentially unknown. 

The above reports show that, while much information has been 

obtained, our present knowledge is insufficient to allow the 

structure to be elucidated. 

Relationship Between the Sizes of the Caseinate Micelles 

and Their a-Caseln: p-Casein Ratios 

The composition of whole and fractionated casein, 

obtained by ultracentrifugal sedimentation has been studied 

by de Kadt and van Mlnnen (1943), Ramsdell and Whittier 

(1944), Chanutin _et (1942), Hostettler ejb aJ. (1949), ter 

Horst (1947, 1950) and Ford e_t al. (1955) to name a few. On 
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casein preparations derived from coarse and fine "micellae" 

from the same milk had practically the same a- and g-casein 

composition and concluded that it is probable that these 

fractions, if they occur in milk in a preformed condition, are 

already mixed in the "micellae". Ford ejt a2. (1955) concluded 

that on the basis of the OP:GN ratio (organic phosphorus: 

casein nitrogen) the native caseinates (obtained at 20 C) 

cannot be a-, g- or y-casein alone. These casein fractions 

have the OP:CN ratio of 0.0637, 0.0398 and 0.0032. Ford 

et al. (1955) concluded that the OP:ON ratio, 0.056, found in 

a sedlmented gel could result from the presence of all three 

caseins in a definite proportion of l6:4:l yielding an 

0P:CN ratio of 0.0563. They do not rule out the possibility 

that a-j 3-j and Y-casein could exist in separate particles 

and that the a-particles, p-partlcles, and y-particles have 

comparable or identical size distributions. 

In the work of Ford _et al. (1955), 5-10 percent of the 

casein was not removed during centrifugation (which is true 

for all reported attempts to sediment casein without adding 

calcium or resorting to rather high centrifuging temperatures). 

In a subsequent paper. Ford and Martinez-Mateo (1958) investi­

gated this non-sedimenting fraction, which contained the 

smallest casein particles, by isoelectric precipitation. 

They found that the OP:ON ratios were the same as in the 
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sedlraented portions. 

On the basis of the composition of casein fractions, 

obtained with the ultracentrifuge, there is evidence that the 

a-casein:. p-casein ratio (by moving-boundary electrophoresis) 

is independent of casein particle size. However, the data 

reported on the electrophoretic patterns of ultracentrifugally 

separated fractions are conflicting. Hostettler et al. 

(19^9) sedimented (1000-17,000 x g) the caseinates, at 2-3 C 

into five fractions. Using equal protein concentrations, 

moving boundary electrophoretic patterns were run and the 

a-: p-casein ratios were found to be independent of micelle 

size. Heyndrickx and De Vleeschauwer (1952) sedimented the 

caseinates (no temperature given) at 7,000, 25,000 and 38,000 

X g, and determined the moving boundary electrophoretic 

patterns of the supernatants. They found that the a-: g-

casein ratios in the supernatant decreased as the caseinate 

concentration was depleted. Heckman _et aJ. (1958), in an 

effort to resolve the conflicting reports above (Hostettler 

_et a^., 1949 and Heyndrickx and De Vleeschauwer, 1952), 

repeated the work and reach the same conclusion reported in 

both papers. Heckman et al. (1958) then conclude that the 

presence of serum (whey) proteins in the dialized super­

natants preparations cause changes in the interaction between 

a- and 3-caseins and states that the constancy of compositions 

of the centrifugally separated complex is considered strong 
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evidence that the particles of various sizes in milk have 

essentially constant compositions in agreement with Ford _et al. 

(1955) and Hostettler _et al. (19^9). Heckman et al.'s (1958) 

work is available only as an abstract of a paper presented at 

a meeting. Hence, a critical evaluation cannot be made. 

More recent work on the a-casein: g-casein ratio vs. 

particle size relationship has indicated that the a-casein: 

3-caseln ratio is dependent on particle size, adding further 

to the confusion caused by the conflicting data above. 

Annibaldi (1960) separated the fat from whole milk (30 C) 

and sedimented 90 percent of the caseinate at 4.0 C and 150,400 

X _g for 60 min. The sediment consisted of a lower opaque 

layer (large particles) and a clear upper layer (smaller 

particles). He separated these layers and determined their 

moving boundary electrophoretlc patterns. Annibaldi reported 

that the transparent layer had more a-caseln and less 

3-caseln than the opaque layer, which contained the largest 

micelles. Annibaldi (1961) confirmed his previous results, 

with caseinates obtained at successive speeds of 10,000, 

20,000 and 40,000 rpm (13,100, 53,600 and 144,700 x & respec­

tively) . 

Recent work, reporting specifically on the a-casein: 

3-caseln ratios in relation to particle size (Yamanchi and 

Tsugo, 1962) is in general agreement with Annibaldi (196O, 

1961). Yamauchi and Tsugo (1962) likewise Included the effect 
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of heating (85 0 for 30 min) and cooling (4 C) the skim milk. 

They fractionated the caseinates into three fractions by-

differential centrifugation (42,000 and 65,620 x_g). They 

resuspended and isoelectrically precipitated each fraction and 

obtained a fourth fraction by isoelectric (I.E.) precipitation 

of the final supernatant (fraction IV-a non-sedimented fraction). 

The fractions, all I.E. preparations, were dispersed in 

concentrations in dilute NaOH at pH 7.0. The solutions were 

dialyzed against phosphate buffer (pH 7.0 r/2 =0.1) at 4 C 

for 2 days and the moving boundary electrophoretlc analyses 

were carried out. The I.E. (non-sedimented) caseins correspond­

ing to fraction IV above, were turbid when resuspended and 

were centrifuged until clear. A loss of less than 2 percent 

of the total nitrogen was encountered. It should be pointed 

out that Yamauchi and Tsugo (1962) did not include any of the 

non-sedimented fractions (obtained in a number of experiments) 

when the a-casein: p-casein ratios were determined, because 

all these fractions exhibited a component designated X between 

the a- and g-casein peaks in the electrophoretlc patterns. 

The authors concluded that the X component caused the tur­

bidity. Yamauchi and Tsugo (1962) proposed that it might 

be the unidentified component obtained by McKenzle and Wake 

(1959a) during paper electrophoresis, or the peak observed by 

Kenyon and Jenness (1958). Larson (1958) also reports an 

X component. Yamauchi and Tsugo (1962) observed no difference. 
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In the a-caseln: 3-caseln ratio, between fresh and heated 

milk. However J the ratio of a-casein: g-casein slightly 

increased from fraction I (the largest sedimented micelles) 

to fraction III (the smallest sedimented micelles). The 

organic phosphorus: casein nitrogen (OP:CN) ratios did not 

relate to the size of the micelle in agreement with Ford 

_et aJ. (1955). However, the (OP:CN) ratios were low in fraction 

IV (non-sedimented fraction). Yamauchi and Tsugo (1962) 

also investigated the effect of low temperature on the a-

and g-casein composition in the non-sedimented fractions. 

They reported an increase in p-casein composition in the non-

sedimented fractions when the centrifugation was done at low 

temperature (4-7 C). They also reported a decreased sedi-

mentability of the caseinates at low temperature and concluded 

that this is caused partly by the increased solubility of g-

casein at low température. They further concluded that since 

the p-casein that is solubilized from the whole casein may be 

a very small portion of whole casein, no effect on the &-

casein: g-casein ratios in the sedimented fractions may be dis­

cernable but would be discernable in the non-sedimented fraction 

since this fraction contains only 5-15 percent of the total 

casein. The authors (Yamauchi and Tsugo, 1962) consider their 

data as direct evidence for the solubilization of p-casein 

at low temperature v^. the indirect (analytical ultracentrifuge 

data) evidence of Sullivan_et a^. (1955). They concluded that 
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most of the 3-casein was sedimented even at low temperatures, 

and suggested that the probably coexistence of calcium and 

calcium phosphate with native caseinates may keep g-casein with' 

the other casein components in the micelle at low temperature 

and restrict the loss of g-casein to the monomeric form. 

The caseinate fraction (5-15 percent) not sedimented in 

180 min at 50,000 x g and 4.0 G, termed whey-soluble caseinate 

or non-micellar casein, has been investigated by moving 

boundary electrophoresis by Bohren and Wenner (1961). They 

reported that whey-soluble casein (WSC) and whole casein differ 

as regard organic phosphorus: casein nitrogen (OP:CN) ratios. 

The moving boundary electrophoretic patterns show a lower 

a-casein: 3-casein ratio in ¥SC, obtained at 20 C, than in 

whole casein, when the quantity of WSC is less than I5 percent 

of the total casein. The a-casein: p-casein ratio of WSC 

is further reduced if the centrifugation is performed at 4 C. 

In fact, under these conditions there appears to be more 

p-casein than a-casein in the fraction. Bohren and Wenner 

(1961) concluded that ultracentrifugation of caseinates in 

the temperature range, 4 to 20 0, yields a sediment that is 

diffident in 3- and Y-casein; they consider that %-oasein 

(calcium-insensitive fraction of a-casein) might be an 

important factor in solubilizing p- and Y-caseins. These 

results may suggest a cause of the conflicting results that 

have been reported. It has been only recently (since 1955) 
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that there has been an appreciation of the Increased solubil­

ity of some of the casein fractions, at low temperature. A 

few of the papers considered here do not indicate the temper­

ature at which the casein was fractionated likewise there have 

been differences in the manner of handling the fractions, prior 

to electrophoretlc analysis. The work of Bohren and Wenner 

Indicates that some of the reported dependence of the 

a-casein: p-casein ratios on micelle size may result from a 

non-uniform solubilization of some of the p-casein, which could 

occur if constant temperatures were not used. 

Additional work on the non-micellular milk proteins 

(whey-soluble casein and whey proteins) has been reported by 

Hansen et al. (1962). The significance of this work in 

relation to MSG is somewhat puzzling, since the authors do 

not mention a-caseln in their fractions. They Investigated 

the supernatant of milk centrlfuged at 55,150.x £ for 10 

hours at 0-2 C. The "natural protein free milk system" 

(dlalysate) was used as a buffer in the moving boundary 

electrophoresis. They compared these electrophoretlc patterns 

with those obtained using a veronal buffer. Tentitatlve 

identification of components was accomplished using a boundary 

elimination technique. They concluded that in the native state 

at about 0 G, the major non-mlcellar proteins are not associ­

ated with each other and the mobilities are less in the native 

state than they are in veronal buffer. MSG was precipitated 
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by the Rowland (1938) technique and was subjected to moving 

boundary electrophoresis in veronal buffer. Hansen et al. 

(1962) indicated that the preparation contained 82.57^ of 

p-casein and 2.90^ of Y-casein, together with a component, 

consisting of 14.52^ of the W8C, with a mobility of -4,73 x 

10"^ cm^ volts"! sec~^. This component is possibly the X 

component reported by Larson (1958). The high percentage of 

3-casein is in general agreement with Bohren and Wenner 

(1961). 

Morr (1965) reported results using a differential 

centrifugation procedure to fractionate the caseinates. The 

data are puzzling because the electrophoretic components 

(in phosphate buffer) of each fraction separated were not 

identified. The reported mobilities of these components do 

not agree with mobilities reported for a- and p-casein in 

phosphate buffer by McKenzie and Wake (1959^). Morr (1965) 

fractionated raw and heated (88 C for 10 min) milk to obtain 

particles of 55,83 and 135 in diameter. Only a slight 

dependence of chemical composition of the sedimented fractions 

to particle size was exhibited. Aliquots of each of the 

above fractions were solubilized (potassium oxalate) and moving 

boundary electrophoretic analysis were performed in phosphate 

buffer (pH 6.8, r/2 = O.l). Sedimented proteins (l35 

and above), from raw and heated skim milks contained 72.5 

and 69.50 of the protein in, the fastest moving component (l). 
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(descending mobility -5.5 % 10 ̂  cm volts sec ), whereas 

the fraction from 55 nija and above contained 78.2 and 8l.6^ 

of their proteins in component (l) respectively. Assuming 

that component I is a-casein, Morr's (1965) results would 

support the conclusions of Annibaldi (196O, 196I), Yamauchi 

and Tsugo (1962) and Heyndriclcx and De Vleeschauwer (1962), 

that the a-casein: 3-casein ratio is micelle size dependent. 

This review points out the diversity of results concerning 

the dependence or independence of the a-casein: g-casein 

ratios with micelle size. There appears to be an almost equal 

amount of evidence on both sides. As mentioned previously, 

the variety of methods and temperatures employed in the above 

studies could be the reason for their conflicting reports. 

Temperature has been indicated to be a critical factor in the 

results obtained (Sullivan _et ̂ , 1955) and undoubtedly the 

method of preparing samples for electrophoresis plays a part. 

Washing sediments with water may also affect the results, since 

preliminary work at this station has shown that sedimentation 

of all the caseinate from resuspended caseinate solutions is 

extremely difficult; however, this must be balanced against 

the problems of working with unwashed sediments which have been 

shown by Ford _et aJ.. (1955) to contain adsorbed whey proteins 

and non-protein nitrogen. 

Considering the above difficulties it is small wonder 

that conflicting results have been reported. It is entirely 
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within the realm of possibility that all the work actually is 

in agreement when differences in technique are accounted for, 

barring missinterpretation of data. 

Waugh and von Hippel (1956) demonstrated that a-casein is 

made up of a calcium-sensitive (a^-casein) and calcium 

Insensitive ( h-casein) components. These facts have extended 

the investigation of the a- and g-casein composition of the 

different caseinate micelle sizes to include the a^- and n-

casein compositions as well. Sullivan _et aJ.. (1959) and 

Ribadeau-Dumas and Veaux (1964) report an increase in %-casein 

with decreasing caseinate micelle size, using the sialic 

acid composition as an estimate of the amount of Kr-casein. 

However, Sullivan et al. (1959) could show no difference by 

moving boundary electrophoretic analysis, between the original 

casein and the "subfractions". Rose (1965), using turbid-

imetric analysis to estimate p- plus %>casein, and the sialic 

acid contend for %^casein, reports a decrease in p-casein 

content with decreasing caseinate micelle size and a corres­

ponding increase in %-oasein content. 

The results of Rose (1965) and Sullivan _et al. (1959) 

are in agreement as regards h-casein contents; however, 

the fact that Sullivan _al. could show no difference between 

the original casein and its "subfractions" by moving boundary, 

implies that a corresponding decrease in a^-casein should be 

obtained rather than the decrease in g-casein as reported by 



www.manaraa.com

35 

Rose (1965). 

Most of the literature cited is fairly recent. Because 

of the enormous amount of literature dealing with casein, it 

is impossible to review or even mention some of the excellent 

early work. These papers have been covered extensively by 

Sutermeister and Browne (1939), Cohn and Edsall (1943), and 

more recently but less extensively by Jenness and Patton 

(1959). 
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EXPERIMENTAL 

Materials • 

Water 

Distilled water Tap water softened by Ion exchange 

treatment was distilled In a Barnstead, hard-water model, 

laboratory still and stored In a 100 gal. aliimlnum tank. 

Redistilled water Redistilled water was prepared by 

the procedure described by Bird _et (1961). 

Milk 

The fresh raw milk, composite of the evening milking 

from at least 75 cows, was obtained from the University dairy 

farm and separation procedures were Initiated within 1 hr. 

Reagents 

All reagents were reagent grade unless otherwise Indicated. 

Technical grade sodium hydroxide was used In the nitrogen 

determinations. 

Starch The starch employed In urea starch gel 

electrophoresis was Connaught hydrolyzed starch, lot 153 

(Connaught Medical Research Laboratory, Toronto, Canada). 

Polyacrylamlde gel The spacer gel was premlxed upper 

gel solution (Canalco, Bethesda l4, Md.). The lower and sample 

gel solutions were made from dry Ingredients (Distillation 

Products Industries, Rochester 3, N.Y.). 
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Apparatus 

pH meter 

A Beckman Model G portable pH meter with a glass electrode 

and calomel reference electrode assembly (Beckman Instruments, 

Inc., Pasadena, Calif.) was employed. 

Centrifuges 

A Model PR-2, refrigerated centrifuge with an automatic 

timer and temperature control (international Equipment Co., 

Boston, Mass.) was employed to obtain the skim milk. 

A size 2 centrifuge (international Equipment Co., Boston, 

Mass.) was employed to sediment the precipitate obtained in 

the calcium and magnesium determination. 

An Adams Safety Head centrifuge (Clay-Adams, Inc., New 

York, N.Y.) was employed for low speed centrifugation of 

dispersed (oxalate) calcium caselnates to remove the precipi­

tated oxalates. 

A Spinco Model L, refrigerated preparative ultracentrifuge 

(Beckman Instruments Inc., Pasadena, Calif.) was employed in 

obtaining the "native" calcium caseinate sediments. 

Spectrophotometer 

A Beckman Model DU Spectrophotometer (Beckman Instruments, 

Inc., Pasadena, Calif.) was employed in the phosphorus 

determinations. 

Preeze-drying apparatus 

The freeze-drylng apparatus employed was described by 

Decelles (1963,p. 21). 



www.manaraa.com

38 

Conductivity apparatus 

A number 4960, line-operated, portable resistance indica­

tor, with a 1-ml conductivity cell (Leeds and Northrup, 

Philadelphia, Penna.), was employed. 

Moving boundary electrophoresis apparatus 

A Model 38-A electrophoresis apparatus (Perkln-Elmer, 

Corp., Norwalk, Conn.), equipped with a modified Phllpot-

Svensson cylindrical lens system, was employed. Electro-

phoretlc cells, 2-ml and 6-ml, utilizing a closed system were 

used. 

Compensator 

A Model 038-0071 compensator (Perkin-Elmer, Corp., 

Norwalk, Conn.), equipped with a 2 ml syringe, was used to 

adjust the initial boundaries in the moving boundary electro­

phoresis experiments. 

Urea starch-gel electrophoresis apparatus 

Power supply A Model IP-32 Hea.thklt (Heath Co., 

Benton Harbor, Mich.) was employed. 

Gel trays The trays were made from 0.6 cm Plexiglas 

sheets with outside dimensions of 26.3 x I8.O x 1.2 and 

inside dimensions of 22.3 x l4.0 x 0.6 cm. 

Buffer vessels Each vessel consisted of two compart­

ments with outside dimensions of 23.0 x 5.7 x 5.4 cm. The 

over-all dimensions were 23.0 x 11.0 x 5.4 cm. The vessels 

were made from 0.6 cm Plexiglas sheets. 



www.manaraa.com

39 

Sample Insertion knife The knife was made of 1.5 mm 

sheet stainless steel l4 cm wide by 11.3 cm long. One end of 

the sheet was sharpened, forming a blade l4 cm wide; it was 

bent at an angle of 90°, 1.3 cm from the sharpened end. 

The opposite end was bent in a like manner, 2.0 cm from the 

end. The knife was constructed to allow the gel to be cut, 

6.0 cm from the anodic end of the gel, perpendicular to the 

direction of sample migration. The knife was pulled back, 

approximately 1.5 cm and held by a plastic block between the 

end of the tray and the non-sharpened portion of the knife, 

leaving the hands free for inserting the sample wicks. Thus, 

unnecessary handling of the gels is eliminated. 

Buffer wicks The wicks for connecting the buffer 

vessels to the gels, and likewise the two buffer compartments 

were re-usable Nylonge-sponge Cloths (Nylonge Corp., Cleveland, 

Ohio). 

Disc electrophoresis apparatus 

A Model 12 Disc Electrophoresis apparatus, equipped with 

a Model l400 power supply (Canalco, Bethesda, l4, Md.), was 

employed. 

Densitometers 

Densitometer for urea and urea-2-mercaptoethanol starch-

gel patterns A Model 525 Photovolt Densitometer and a 

Model 42 A Photovolt Varicord Recorder (Photovolt Corp., New 

York, N.Y.) were employed. 
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Densitometer for polyacrylamlde disc gel patterns 

A Model E Microdensltoraeter (Canalco, Bethesda 14, Md.) 

was employed. 

Methods 

Analytical methods 

Determination of total solids A modified Mojonnier 

procedure, designed to eliminate charring, was employed. 

Mojonnier total solids dishes, vacuum oven, hot plate and 

weighing pipettes were used. The dishes were cleaned, rinsed 

with distilled water and dried in a 100 C oven for 1 hr, then 

placed in a Mojonnier vacuum oven, under 25 inches of vacuum, 

at 80 C for 1 hr. The dishes were cooled in an aluminum 

desiccator oven PgO^ for 1 hr. Each dish was weighed, a 2-g 

sample of product was placed into it from a.Mojonnier pipette 

and the dish reweighed. The samples were evaporated on a hot 

plate (155 C) until a slight browning occurred. They were 

then placed In the 80 C vacuum oven, under 25 inches of 

vacuum, for 1 hr, removed, cooled as above and weighed. The 

total solids were calculated In the usual manner. 

Determination of moisture Mojonnier total solids 

dishes and a Mojonnier vacuum oven were employed. The dishes 

were cleaned as in the total solids determination, then placed 

in a Mojonnier vacuum oven, under 25 Inches of vacuum, at 

100 C for 1 hr. The dishes were cooled as above. Each dish 

was weighed and about a 0.2-g sample was distributed in the 
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dish and weighed. The samples were dried at 100 C In a 

vacuum oven, under 25 Inches of vacuum, for 4 hr, removed, 

cooled as above and weighed. The percent moisture was calcu­

lated In the usual manner. 

Determination of total, non-casein, and non-protein 

nitrogen Nitrogen determinations were conducted by the 

seml-mlcro Kjeldahl method of Rowland (1938), except that the 

ammonia was caught In 2.5$ boric acid and titrated directly 

with 0.025 N HCl (Menefee and Overmann, 19^0). 

Determination of calcium and magnesium Approximately 

50 mg of freeze-drled native calcium caselnate were weighed In 

platlnlum dishes, 5 ml of 0.06% (W/V) sodium oxalate (to dis­

tribute the light material) and 15 drops of concentrated HNO^ 

were added, and the samples evaporated to dryness on a sand 

bath (80-85 0). The dishes were placed in a cold muffle 

furnace set at 450 C, the furnace was turned on and the samples 

were ashed for 24 hr. When a white ash was not obtained, a 

few drops of concentrated HNO^ were added and the process was 

repeated. The ash in each dish was dissolved in 2 ml of 10$ 

HCL (v/v), transferred quantitatively to a 25-ml g.s. volumet­

ric flask and made to volume with redistilled water. 

Calcium and magnesium were determined by the method of 

Bird _et aT. (1961) except that the bulk of the metastannate 

precipitate was removed by centrlfuging in 250-ml Pyrex 

bottles in a size 2 International centrifuge, at 1000 x g for 
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10 min; the supernatant was filtered through Whatman, No. 4o 

filter paper. 

Determination of total phosphorus Fontaine's(1942) 

spectrophotometric method was employed with a 1- or 2-ml 

aliquot of the solution resulting from the ashing procedure 

above. The total phosphorus was calculated from the following 

regression: 

mg phosphorus/25 ml = ^'^2Q"28Ô4^^^^ 

Preparation of skim milk 

Skim milk was obtained by centrifuging whole milk in 

1-liter polyethylene bottles with a model PR-2 International 

refrigerated centrifuge at 2.5 ± 1 C at 2100 rev/min (1109 x _g) 

for 90 min and the skim milk removed by a siphon. 

Preparation of a -casein and ̂ -casein 

ttg-Casein and %-casein were prepared, from skim milk, for 

use as a standardizing guide in gel electrophoresis. The 

sulphuric acid procedure of Zittle and Custer (1963). was 

employed for preparing h-casein, using four alcohol purifica­

tions. The a -casein was obtained from the by-product of the 

above preparation using the method of Zittle _£t aJ. (1959), 

after raising the pH to 4.6 with 2 N HCl. The a -casein was 

purified twice with alcohol according to the method of Zittle 

and Custer (1963). 
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Preparation of Isoelectric casein 

Preparation 1 The casein was prepared "by precipitation 

at pH 4.6 with 1 N HCl and peptized with NaOH at a pH < 6.7; 

It was repreclpltated three times at pH 4.6 with 1 N" HCl. 

The final casein preparation was washed three times with 

redistilled water and freeze-dried. 

Preparation 2 The milk was from the same source as 

preparation 1, but obtained at a different period during the 

year. The casein was prepared by precipitation at pH 4.6 with 

1 N HCl, peptized twice at pH g; 7.0 with NH^OH and repre­

clpltated twice with 1 N HCl. The casein was washed three 

times with redistilled water, air dried between sheets of 

filter paper and soxhlet-extracted with ethyl ether overnight. 

Ultracentrifugal fractionation of "native" calcium caseinates 

Differential ultracentrlfugatlon of the caseinate 

micelles Raw skim milk was obtained, June 6, I963, as 

described above. The "native" calcium caseinates were 

differentially fractionated (serially depleted) by centri-

fuglng in a Model L Spinco (No. 21 angle head) ultracentrifuge 

at 20,000 rev/mln (maximum _£ force, 53,620) and 0 C. The 

filled centrifuge tubes were chilled in ice water, placed in 

the previously chilled rotor, the rotor was placed into the 

previously chilled centrifuge, and centrlfuged. The super-

natants, poured from the preceeding time Increment, were 

used for the next time increment, as follows : 
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Skim, milk 

Centrifuge brought 
up to Speed 

20,000 rev/rain 
0 C 

0-min sediment 

supernatant Centrifuged 
10 min 

supernatant 

1 
etc. 10-min sediment 

After pouring off each supernatant, the upper portion of the 

centrifuge tubes were wiped to remove any lipid material and a 

small amount of redistilled water added to the tubes. All 

sediments were redispersed, in the centrifuge tubes, in the 

redistilled water by gently rubbing the surface of the 

sediments with a glass rod. The centrifuge tubes, filled with 

the redispersed caseinates, the head, and centrifuge were 

chilled as above and the caseinates resedimented during 12 hr 

at 53,620 X g and 0 C. The supernatants were discarded and 

the resulting "washed" caseinates redispersed in redistilled 

water and freeze-dried for storage and later study. The dried 

caseinates were stored at room temperature in a vacuum desic­

cator over PgOr. 

A problem of leaking tubes during centrifugation was 

encountered. This resulted in a reduced amount of super­

natant so that only six time increments (0-, 10-, 20-, 30-, 

40-, and 55-min) were obtained. Additional fractions, which 
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were thought to be .analogous to those that would have been 

obtained at 70 and 80 mln were obtained by centrifuglng the 

same skim milk for 60 mln, followed by fractionation of the 

supernatants at 10 min centrifuglng intervals. These addi­

tional two fractions were washed and freeze-drled as previously 

described. 

A composite of the above fractions were also obtained, 

from the same milk, by subjecting the skim milk to the same 

centrlfugation conditions for 20 hours. The 20-hour sediment 

was washed as described above except that a 20-hour centrlfu­

gation was employed in sedimenting the caseinate after 

dispersion in water. The supernatant from the 20-hour 

centrlfugation contained the "whey-soluble" caseinate, which 

was precipitated with 1 N HCl at pH 4.6 (not repeptized), 

washed three times by dispersing the precipitate in redistilled 

water and sedimenting at room temperature and 1000 x g. The 

whey-soluble casein was freeze-drled and stored as above. The 

total solids, and total nitrogen contents of the super­

natants were determined. The freeze-drled caseinate fractions 

were analyzed for moisture, total nlbrogen, total phosphorus, 

calcium and magnesium. 

The caseinate fractions are designated according to the 

total centrifuglng time at $3,620 x g (i.e., 0-min, 10-min, 

20-min, 30-mln, 40-min, 55-niln, 60+10 (70 )-min, 60+10+10 (8o)-

min, and 20-hour); the whey-soluble casein is designated 
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Isoelectric "whey-soluble" casein. 

Preparation of "total native" calcium caseinate An 

attempt was made to sediment all of the calcium caseinate from 

skim milk. Raw skim milk was obtained, October 26, I963, as 

described above. The "native" calcium caseinate was sedi-

mented in a Model L Spinco (No. 4o rotor) during 100 hours at 

0 C and 40,000 x _g (maximum _£ force, 144,700). The sediment 

from several tubes was dispersed as above and freeze-dried as 

an "unwashed" control. The sediment in the remaining tubes 

was washed and freeze-dried as previously described except 

that 100 hours at 144,700 x £ and 0 C was employed in sedi-

menting the caseinate after dispersion in water. The super-

natants and freeze-dried caseinates were analyzed for the same 

constituents as above. In addition, the supernatants and wash 

water were analyzed for casein nitrogen and non-protein 

nitrogen. The "total native" calcium caseinates are desig­

nated as 100-hour W (washed fraction) and 100-hour UW (unwashed 

fraction). 

Moving boundary electrophoresis 

Preparation of buffers 

Veronal buffer A standard sodium veronal 

(barbital) buffer, pH 8.6 (at 2 C) and 0.1 ionic strength, 

prepared as described by Alexander and Block (196O, p. 202), 

was employed for isoelectric casein preparations. The pH 

was about 8.3 at 23 C. 
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Veronal-urea-buffer The standard veronal buffer 

containing 5 M urea was employed. No effect was made to adjust 

the resistance of this buffer to correspond to the resistance 

of the standard veronal buffer. 

Veronal-oxalate buffer Sodium oxalate was chosen 

as a means of dispersing calcium caseinate. Since a non­

standard veronal buffer was to be employed, it was necessary to 

use some uniform criterion for preparing the oxalate buffers 

because of the variation in calcium (Ca) and magnesium (Mg) 

contents of the caseinate fractions to be examined. A constant 

conductivity of sample free buffer was chosen. Sufficient 

sodium oxalate was added to a series of single strength veronal 

buffers, without NaCl, (r/2 = 0.02) to just react with the Ca 

and Mg in a 1.0# protein solution of the 20-hour fraction 

(7.01 mM/liter) and varying quantities of 5-0 M NaCl were 

added and their resistance determined. The veronal-oxalate 

buffer (7.01 mM oxalate/liter) having the same resistance as 

the standard veronal buffer above (r/2 =0.1) was found to 

require 13.48ml of 5.0M NaCl/liter resulting in an ionic 

strength of 0.1084. The oxalate buffers for the other 

caseinate fractions were prepared by adding the prescribed 

amount of sodium oxalate, based on the Ca and Mg content of the 

individual fractions, and adjusting the ionic strength to 

0.1084 with 5.0 M NaCl. The resulting veronal-oxalate buffers 

had resistances, within experimental error, equivalent to the 
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standard buffer above. The fact that the oxalate buffers could 

be prepared In this manner is probably due to the narrow range 

of Ca and Mg contents encounted in the caseinate fractions. 

No further adjustment of the pH was necessary when sodium 

oxalate was added to veronal buffer. 

In some cases, veronal-oxalate buffers containing an 

excess of sodium oxalate were used. This was accomplished by 

replacing all of the NaCl with sodium oxalate. To obtain a 

buffer with a resistance equivalent to a standard veronal 

buffer (220 ohms); 0.0534 M/liter of sodium oxalate was 

required with a resulting ionic strength of 0.l802 in the sample 

free buffer. 

Veronal-disodium ethylenediaminetetracetate (EDTA) buffer 

In order to obtain a comparison with the data of Annibaldi 

(i960, 1961), veronal buffer containing disodium dihydrogen 

ethylenediaminetetracetate dihydrate (EDTA) was prepared. 

Since EDTA is acidic, the veronal buffer was prepared as 

described by Alexander and Block (196O, p. 202) except that 

the HOI, employed to adjust the pH, was replaced with EDTA. 

Approximately 4.0 mM/liter of the dihydrate sodium salt of 

EDTA was required to adjust the veronal buffer to the desired 

pH of 8.6 at 2.0 C. 

Preparation of "native" calcium caseinates for moving 

boundary electrophoresis The veronal-oxalate buffers, 

previously described, containing the appropriate amounts of 
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sodium oxalate were employed with all caseinate fractions. 

The calcium caseinates, O.lg protein on a dry basis, samples 

were placed in 10 ml volumetric fla"sks\^ and approximately 

9.0 ml of the appropriate buffers added. The samples were 

allowed to hydrate (overnight at 4.4 C), warmed to room 

temperature and made to volume with the appropriate buffer. 

The Ca and Mg oxalates were removed by centrifugation at 1000 

X g for 10 min at room temperature. The samples were placed 

in Visking seamless cellulose tubing, 26/32 inches inflated 

diameter (Visking Co., Chicago, 111.) and dialysis carried out 

at 4.4 C, against the same buffer employed in dispersing the 

sample. Dialysis was carried out in 1-liter dialysis units 

(American Instrument Co., Silver Spring, Md.) consisting of a 

stirring motor, stirrer and an attachment for holding the 

cellulose tubing. The stirrer was designed to stir the 

contents within the cellulose tubing. The buffer outside 

the cellulose tubing was stirred by a magnetic stirrer. The 

samples were dialized for 24 hr against 2 changes (500 ml 

each) of buffer. After dialysis, the samples were removed 

from the cellulose tubing and centrifuged again at 1000 x_g 

for 10-min at room temperature to remove the oxalates pre­

viously unsedimented due to their almost colloidal character. 

The resulting samples were in most cases, reasonably clear. 

When veronal oxalate buffers, containing excess sodium oxalate, 

were employed, the same procedure employed above was used. 
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When veronal-EDTA buffer was used, the above procedure 

was employed to disperse the caseinate samples except that 

centrifugatlon was not necessary. The sample plus buffer was 

dlallzed as above against standard veronal buffer, to simulate 

Annibaldi's conditions. 

Moving boundary electrophoresis The procedure des­

cribed in the Perkin-Elmer instruction manual for the closed 

system was employed with one exception, when 5.0 M urea was 

used in the veronal buffer a 3N NaOl solution, instead of the 

usual 1/3 saturated NaCl soltuion, was used to surround the 

electrodes because of the high density of the urea buffer. 

The electrophoretic cells were filled in a 4.4 C cold room and 

the buffer vessels charged with the second buffer dialysate. 

The cell was placed in the ice water bath of the apparatus 

(1.5-2.0 C) and allowed to equilibrate for 30-min. During this 

time, the hose and 2-ml syringe connecting the compensator to 

the closed side of the cell were filled with buffer. Care 

was used to eliminate bubbles. 

The hydrostatic head created during this operation was 

released by opening the closed side of the cell for a few 

minutes. After the cell had equiliberated, the center section 

of the cell was pushed into alignment and the boundary brought 

into view on the ground glass screen with the compensator 

(using the small pully). Approximately 30-min was required 

to move the boundary 3-4 mm into the field of view. The 
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compensator was turned off and a current of 2 watts applied 

across the cell (about l4 mA). Pictures of the descending 

patterns, using Type l46-Polaroid transparent film and a 

Land Camera, were taken after approximately 1 hr of running 

time had elapsed (current on, bath stirrer off). Additional 

pictures were taken, after I.5 hr, of the ascending pattern 

(current on) and the descending pattern (current off). 

One to two minutes exposure times were used depending upon the 

clarity of the patterns. 

Conductivity measurements of the sample-free buffer and 

sample plus buffer were made, using the same bath as the cell, 

while the electrophoresis was in progress. The pH of the above 

solutions were determined at room temperature. 

Analysis of the moving boundary electrophoretic patterns 

The patterns were enlarged (3-4 times) with an Omega D-3 

Enlarger (Simmon Brothers, Inc., Long Island City, N.Y.) and 

the patterns traced on graph paper. The magnification factor 

was calculated by measuring the length of a 2.54-cm line 

enlarged the same amount as the pattern as follows; 

(enlarged line In cm)(l.06) , magnification factor 

Where the I.06 is the camera magnification'factor (from 

the instruction manual). 

Calculation of the relative percents of components 

in the pattern The Gaussian curves, as transparencies, 

of Weidemann (194-7) were used in the enlarger to extend the 
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enveloping curve (outside curve) of the peaks In the pattern 

to baseline. The baseline was taken as the bottom of the 

entire pattern. In cases where Incomplete resolution of the 

peaks was obtained, the method by Svedberg and Pedersen 

(1940, p. 296), as suggested by Longsworth and Mclnnes (1940), 

was employed; this method consists of drawing the Gaussian 

curves for each peak such that the sum of the areas of the 

peaks involved is equal to the total area under the enveloping 

curve. The relative areas under all peaks were determined by 

planimetry. 

Calculation of electrophoretlc mobilities The position 

of the bisecting line for each peak, used to determine the 

distance of migration, was determined with the aid of the 

Gaussian transparencies. In cases where the peak was 

asymetrical, the position of the bisecting line was determined 

by trial and error. 

The electrophoretlc mobilities of the casein components 

were calculated from the descending pattern as outlined by 

Alberty (1948) using the false boundary (e peak) as the initial 

boundary as suggested by Tobias ̂  aJ. (1952a). The actual 

distance that the peaks migrated was determined by measuring 

the distance on the enlarged tracing and dividing this 

distance by the magnification factor. 

Gel electrophoresis 

Horizontal urea starch-gel electrophoresis (USG) The 



www.manaraa.com

53 

method employed was basically the one described by Smithies 

(1955) and Wake and Baldwin (1961) with a few minor modifi­

cations, Pieces of Plexiglas, 3 mm thick, were fastened to 

the top of the 6.0 mm gel trays with silicone grease and held 

in place with rubber bands forming a tray with a depth of 9.0 

mm. The gels were prepared as described by Wake and Baldwin 

(1961), except that degassing was held to a minimum. When 

2-mercaptoethanol (MCE) was used it was added after degassing 

according to the method of Neelin (1964). The gels were 

poured into the trays, covered with Parafilm and allowed to 

gel at 4.4 C for I6 to 20 hr. After gelling, the added 

pieces of Plexiglas were removed and the top 3.0 mm of gel, 

which contained the air bubbles was sliced from the gel with 

a 26 gauge Nichrome wire. The knife, previously described, 

was used to slice the gel perpendicular to the direction of 

current flow, 6.0 cm from the anodic end of the gel. The 

samples were applied by dipping 9.0 x 5.5 mm filter paper wicks 

(No. 319329, Beckman Instruments, Inc., Palo Alto, Calif.) 

into the sample and laying the impregnated filter paper 

against the cut surface of the gel. Care was exercised to 

eliminate air bubbles. The filter papers were placed about 

6 mm apart and 5 mm from each edge enabling 8 samples to be 

run on a l4 cm gel. After placing the samples in the gel,• 

the knife, restraining the gel, was removed and the cut 

surfaces of the gel were pushed together. The gel was wrapped 
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with Saran film except for 2,0 cm at each end. Both compart­

ments of the buffer vessels were filled with "borate buffer (pH 

8.6), Poulik (1957). This compartment was bridged-to the 

nearer one in each vessel with the Nylonge-sponge cloth. 

The buffer vessels were placed in a refrigerator at 3.0 C, 

26.0 cm apart, with the electrode compartments the ones 

farthest from the gel. The poured gel tray, was supported 

by the buffer vessels. The buffer vessel containing the 

anode supported the end of the gel containing the samples so 

that the protein which in these experiments are negatively 

charged, migrate toward the cathode. The buffer wicks were . 

placed on the gel so that they covered the exposed 2.0 cm 

on each end of the gel; they were held in place by Saran 

wrapped brass bars (12.0 x 1 x 0.5 cm). A potential of 

180 volts, resulting in a current density of 40 mA, is 

applied across the system during I6 hr, or until the brown 

borate boundary has migrated a distance of 12.0 cm from the 

sample wicks. The current density at the end of the run 

is about 13 mA. 

After the desired migration had occurred, the gel was 

unwrapped, the tray inverted onto a sheet of filter paper and 

the tray slowly removed. The sample wicks were removed and 

the gel sliced into two gels 3.0 mm thick. The desired 

thickness was obtained by placing strips of plastic, 3.0 mm 
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thick, along side the gel. A piece of filter paper was 

placed on the top of the gel and the top slice removed for 

staining. The filter paper adheres to the gel and facilitates 

handling the gel which is weak. One slice of the gel was 

stained with Nigrosine and the other with Amido Black lOB as 

described by Smithies (1955). The stained gels were washed 

in methanol-water-acetic acid (l0:10:l) separately until no 

more background stain was removed. The gels were then stored 

by wrapping the wet gels in Saran film. 

Dispersion of the "native" caseinates for urea starch-gel 

electrophoresis Two methods are available for redispersing 

the natural calcium caseinates for USG electrophoresis. The 

calcium caseinates were readily dispersed by the urea 

(6.6 M) and citric acid present in the gel buffer (urea-

tris-citrate) and with urea-tris-citrate-oxalate buffers 

(O.OIM NapCpOhp. In the latter buffer, calcium was removed as 

the oxalate by centrifugation ('1000 x_^). The caseinate 

samples were dispersed in the buffers by allowing them to 

hydrate overnight at 4.4 C and were used within three days. 

All samples were dispersed in non-oxalated buffer for USG 

and urea-2-mercaptoethanol starch-gel (USG-MCE) electro­

phoresis. In addition, three of the caseinate samples were 

dispersed with the oxalate containing buffer for USG-MCE 

electrophoresis. In USG-MCE electrophoresis, the %-casein 

of the samples were depolymerized (reduced) by adding 0.01 ml 
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MCE to 1.0 ml of the sample plus buffer (Woychik, 1964), 

and. were allowed to stand at least 3 hr prior to electro­

phoresis . 

Protein concentrations of samples for urea starch-gel 

electrophoresis 

Urea starch-gels (USG) Preliminary experiments 

indicated that good resolution of the caseinates was obtained 

in USG at protein concentrations between 1 and 2 percent with 

1.5 percent appearing to be optimal. Subsequent gel electro­

phoresis of caseinates were performed at 1.5 percent protein 

except the 60+10+10(8o)-min fraction, which was electro-

phoresized at a protein concentration of 0.75 percent because 

of the limited supply of this fraction. The isoelectric 

whey-soluble (at 0.0 C) portion of the caseinates (precipitated 

at pH 4.6 with 1 N HCl from the supernatant of skim milk that 

had been centrifuged for 20 hours at 53,620 x _g and 0 C) was 

employed at a protein concentration of 0.75 percent because 

of its high p-casein content, to eliminate excessive lateral 

diffusion. The o^-caseln protein concentration was 0.5 

percent to eliminate excessive lateral diffusion. %-Casein 

was electrophoresed at 1.0 percent protein so that the exten­

sive smearing would show up readily on photographs. Isoelec­

tric casein preparation 1 was electrophoreslsed at 1 and 2.0 

percent protein to insure the visibility of minor components 

on photographs and to determine the effect of protein 
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concentration on the relative amounts of a^- and 3-casein. 

Urea mercaptoethanol starch-gels (USG—MCE) All 

caseinate samples contained 1.5 percent protein except the 

60+10+10(80)-min fraction which contained 0.75 percent protein 

due to the limited supply of the fraction. The ag-casein and 

isoelectric whey-soluble casein samples contained 0.5 percent 

protein so that the major band would not show excessive lateral 

diffusion. The %-casein protein concentrations was 0.21 

percent, which is approximately the %-casein concentration in 

the caseinate fractions based on the assumption that the 

caseinates contain l4 percent %-oasein (0.l4 x I.5 = 0.21 

percent). This was done in order to establish which %-ca8ein 

bands would be visible at the caseinate concentrations employed 

so that the traces could be analyzed on a sound basis. The 

isoelectric casein preparation 2 was electrophoresised at 

0.75 and 1.5 percent protein to determine the effect of 

protein concentration on the relative amounts of ocg- and 

%- and p-casein. 

Preparation of transparencies for analysis of urea 

starch-gels (USG) The major objection to urea starch-gel 

electrophoresis, for this study, is the problem of clearing 

the gels for densitometry. A number of methods for clearing 

starch-gels (made opaque because methanol is used in the 

washing solvent for destaining) for their preservation and/or 

densitometry are described in the literature. Most of these 
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methods employ a basic plastisizing treatment of the gels 

with glycerol, with variations in technique, from method to 

method. Wake and Baldwin (1961), using glycerol, describe a 

method for plastisizing and drying urea starch-gels, but they 

do not discuss densitometry. An attempt was made to clear 

gels for densitometry using the Wake and Baldwin procedure, 

but satisfactory results could not be obtained. Baur (1964) 

states that previous methods, for clearing starch-gels, 

causes their contraction and distortion; he suggested using 

glycerol with drying of the gels on a glass plate. Baur (1964) 

covered the gels with water permeable cellulose sheets and 

dried the gels in a warm air stream. The method of Baur (1964) 

was employed with some of the urea starch-gels in this study. 

Reasonably clear gels were obtained. However, smooth gel 

surfaces were difficult-to obtain due to formation of air 

bubbles between the gels and the cellulose sheets during drying. 

This resulted in rough spots on the surface of the gel, which 

had an adverse affect on the densitometer traces. To elimin­

ate the problems, transparent prints were employed to analyze 

the gels. 

After the analyses of the gels (transparent prints) were 

completed, it was discovered that Goldberg (1958) had suggested 

and used transparent prints to analyze starch-gel electro-

phoretic patterns of hemoglobulin. Gratzer and Beaven (i960) 

stated that "this method cannot give valid results since 
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emulsion blackening Is not directly proportional to the gel 

zone optical density (i.e., pigment concentration)". Their 

argument Is an obvious one, but would not seem to apply in 

this study, since comparison among patterns rather than 

among bands in individual patterns is the primary aim in the 

analysis of the urea starch-gels (with and .without mercapto-

ethanol). 

Electrophoretlc patterns Pictures of the gels 

were taken with Kodalith Ortho type 3 film (Estar base), 

Eastman Kodak Co., Rochester, N.Y. A 4 x 5 in. speed Graphic 

camera, Graflex Inc., Rochester, N.Y., without a filter, was 

employed. The gels were submerged in the washing solvent 

(methanol, water, acetic acid, 10:10:1) and Illuminated with 

two 500 watt photo flood lamps with a shield on the camera to 

prevent reflections. 

Positive transparencies were printed with a contact 

printer. In both the negatives and prints, extreme care was 

taken while agitating them during developing to insure even 

development. 

Analysis of urea starch-gel electrophoretlc patterns 

Identification of bands in urea starch-gel (USG) 

patterns The method of Wake and Baldwin (1961) for 

numbering bands was used. The method consists of arbitrarily 

choosing a reference band (second sharp band behind the major 

ttg-band) and relating its migration to the migration of the 
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other bands. This method is analogous to using a reference 

compound, glucose for examplein paper chromatography of 

sugars and dividing the distance each sugar migrates by the 

distance that the glucose migrates; values are reported as 

A schematic diagram of a pattern of isoelectric casein, 

preparation 1 (IE p-l), is shown in Figure 1. The relative 

band positions agree quite well with those reported by Wake 

and Baldwin (1961), except that these workers indicate the 

occurrence of several minor bands between the No. 13 and l4 

bands in Figure 1. The relative positions of the various 

genetic variants of ccg- and g-casein are also in excellent 

agreement with the data of Schmidt (1964). The data of Neelin 

et al. (1962), who used a number of different buffers, are 

difficult to compare with our data, because the buffer used 

will have considerable effect on relative band positions and 

the authors merely numbered the bands. An exact identifica­

tion of the minor bands is considered impossible because of a 

limited knowledge concerning the effect of the methods of 

isolating whole casein and its fractions; therefore, only the 

major a^- (Figure 1, band 5, 6, and 7) and p- (Figure 1, 

bands 12 and 13) casein bands will be considered in the analysis 

of transparent prints of the patterns. The minor bands 

(Figure 1, 8, 9, 10 and 11), however, are also included in 

the traces of the transparencies because they are involved in 
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RELATIVE BAND POSITIONS 
OF WAKE AND BALDWIN 

BAND NO. 

a s —CASEINS— 

-CASEINS— 

4 1.20 

BORATE BOUNDARY 

REFERENCE BAND 

0.45 

0.38 

0.23 

0.09 

STARTING SLOT 

Figure 1. Schematic diagram of a horizontal urea starch-gel 
electrophoretic pattern, of an isoelectric casein, 
obtained in this study. 
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establishing the baseline of the densitometer traces. 

It is interesting to note, that Wake and Baldwin (1961) 

are of the opinion that bands 14^ 15, I6 and 17^ which appear 

in urea starch-gels, are related to Y-casein. They show that 

these bands are not attacked by rennin whereas k-casein, which 

migrates as a smear in this region, disappears. Likewise 

these four bands are greatly intensified in y-rich fractions. 

However, the inability to obtain highly purified Y-fractions 

makes further inferences concerning these bands questionable. 

Since y-casein migrates as a smear in the region of bands l4, 

15, 16 and 17 (Figure l), without MCE this region.is ignored in 

this section. 

Identification of bands in urea starch-gel patterns 

with 2-mercaptoethanol (MCE) A schematic diagram of 

isoelectric casein and H-casein is presented in Figure 2.-

The two major bands, 16 and 17j Figure 2, of %-casein agree 

closely in band position with the data of Schmidt (1964). 

However, Schmidt (1964) observed an increase in relative 

migration of the g-casein bands, which was not observed during 

this study. Neelin (1964) reported casein USG patterns using 

MCE. His data are difficult to compare with ours. Estimates 

of relative mobilities from Neelin's (1964) photographs show 

a lower relative mobility for the n- and g-caseln components 

than was found in this study. The system of whole numbers 

(starting at the cathode end) shown in Figure 2, yields a 
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RELATIVE BAND POSITIONS 
OF WAKE AND BALDWIN 

BAND NO © 
I 1.63 

2 
3-
4 

1.40 
1.35 
1.32 

Og -CASEINS-

jS-CASEINS -

K-CASEINS -

5-
6 . 
7 -
S -
9-

g: 
13-
14-
15-
16-

17-

18-

REFERENCE BAND 
0.96 

Blâ BAND Na 

13 — KWWM 
086 

-0.83 
.0.72 
.0.66 
•0.61 

0.51 

-0.39 

14-
15-c 

16-g 
17 

1.0% 

19- •032 

20 1 •0.07 
STARTING SLOTS 

0 
ISOELECTRIC CASEIN 

G 

G 
K.-CASEIN (0.21%) 

Figure 2. Schematic diagrams of horizontal urea-2-mercapto-
ethanol starch-gel patterns of isoelectric casein 
and %-caseln obtained in this study. 
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band sequence in general agreement with Neelin (1964). 

The characteristics of the bands of USG are changed with 

MCE is used. The most striking difference is that, although 

the borate boundary line was allowed to migrate the full 12.0 

cm, the migration distances of the components from band 5 

through 20 (Figure 2) were shorter. Since the reference 

band ($_, Figure 2) is included, the relative mobilities of 

these bands (5-20) agree quite well with gel patterns without 

MCE, the decrease in migration appears to be uniform. The 

above difference may be responsible for the very faint pre-

ttg-casein (bands 1 through 4, Figure 2) bands when MCE is 

used, compared with the better resolution of these bands when 

it is not. 

Isoelectric casein USG-MCE patterns gave the desired 

resolution of %-casein. ^-Casein, Figure 2, resolved into two 

major bands l6 and 17, and several minor bands in agreement 

with Neelin (1964), Schmidt (1964), and Mackinlay and Wake 

(1964). Band 16 (Figure 2) was the most pronounced of all 

the K-casein bands. 

Densitometry of urea starch-gel transparent prints 

Transparent prints were taken of the gels as previously 

described. The prints were cut into strips each representing 

a pattern of a single preparation and traces were obtained with 

a Photovolt Densitometer model 525 using a Photovolt Varicord 

Recorder model 42A (Photovolt Corp., New York, N.Y.). The 
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SYNCRONOUS MOTOR PLASTIC STRIP 
26.0 X 37 X 0.1 cm 

TRANSPARENCY \ 

PHOTOELECTRIC SLIT APERTURE 

-A 
SANDPAPER 

CELL 
Figure 3. Diagram of the method employed to scan transpar­

encies of urea starch gel and urea 2-mercapto-
ethanol starch gel electrophoretic patterns with 
the densitometer. 

synchronous motor assembly on the transmission density unit 

was displaced 3.0 cm to the left (using holes already present 

in the cover) in order that the drive wheel would not slip 

on the transparencies during the last half of the trace. 

The transparent strip and a piece of sandpaper (Figure 3) were 

taped to a strip of plastic (26.0 x 3.7 x 0.1 cm). The sand­

paper was employed to eliminate slipping. 

With USG or USG-MCE gels, the bands representing the 

components are not all the same length. Therefore, the slit 

aperture on the densitometer was masked with black electrical 

Scotch tape to yield a slit length equal to the longest band 

in the pattern to be scanned. Although this method decreases 

the accuracy with which the shorter bands can be traced 

because of extraneous light, the longer bands, a_- and 
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3-caselnSj were considered more important in this analysis. 

Likewise it was thought that the length of the bands was a 

function of the protein concentration presented "by the bands. 

The No. 1 response on the recorder was used to obtain a 

linear response for all the traces. The range setting on the 

Electronic Photometer was set on the lowest range, usually 

No. 1 or 2., that gave 100 percent transmittance (zero optical 

density) on the photometer and still allowed the dark zero 

on the photometer and recorder to be set. The recorder chart 

speed was 7.7 cm/min and the syncronous motor drove the plastic 

strip 4.2 cm/min resulting in an enlargement of the pattern 

on the transparent strip of 1.83 in the traces. 

Analysis of the densitometer traces The major problem 

in the analysis of the traces was the difference in background 

depth among and within the transparencies and the fact that 

the slit aperture length was not always the same. To eliminate 

errors in this regard, a consistant but arbitrary method for 

determining the baseline was used, because comparison of 

patterns was desired. 

Urea starch-gel (USQ) patterns Since H-casein 

does not resolve into discreet bands with this system, only 

the a - and p-casein components were considered. The base 

line was arbitrarily taken at the minimum between these two 

peaks. Two positions on the transparencies, the first just 

ahead of the borate boundary line, 1, and the second Just 
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ahead of the major ttg-band, 2^ (band 5, Figure l) were used 

to set the zero on the densitometer (Figure 4). The distance 

from the zero positions (band 2), to the point that just inclu­

ded the 3-caseln peak were measured on the transparency, 

multiplied by the magnification factor (I.83) and these 

distances were laid-off on the traces. The patterns were 

traced, the traces cut out and the peaks were weighed. 

Urea starch-gel with 2-mercaptoethanol (USG-MCE) 

patterns With this treatment, ^-casein forms descreet 

bonds, at least for isoelectric preparations. In order to 

obtain estimates of the %-caseln contents as well as the 

ttg- and p-casein in the samples, a different method of deter­

mining the base line was used. Since there appeared to be 

excellent agreement between the two methods of setting the 

densitometer zero in the USG patterns, only the zero position 

before the major & -band was employed. This was necessary 

due to the very faint borate line which was obtained with the 

USG-MCE patterns. The distance from the zero position on the 

transparency (the point just ahead of the major a^-casein band. 

No. 5, Figure 2) to and including %-casein (band YJ, Figure 2), 

was measured on the transparency and was multiplied by the 

magnification factor (I.83) to convert it to the distance of 

the equivalent portion of the trace. This distance was laid-

off on the trace (Figure 5) from the same zero position. , At 

the end of this distance, the point farthest from the zero 
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ACTUAL SIZE 

CASEIN Go-CASEIN CASEIN Gc- CASEIN 

POSITION 

POSITION 

100% TRANSMITTANCE 
1 Densitometer zero set just ahead of the "borate "boundary, position 1. 
2 Densitometer-zero set just ahead of the major a -casein band, position 2. 

3 Distance determined from the picture or transparency, multiplied "by the 
•magnification factor (I.83) and laid-off on the traces. 

Figure 4. Method of determining the "baseline on the densitometer traces of urea 
starch-gel electrophoretic patterns. 
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AMiDO BLACK STAINED 
PATTERN 

NiGROSINE STAINED 
PATTERN CASEIN 

ACTUAL SIZE 

P -CASEIN Of CASEIN 

-V/c -CASEIN 

K -CASEIN 

100% TRANSMITTANCE 

1 Densitometer zero set just ahead of the major a^-casein band. 

2 Distance to band 17_, Figure 2, as measured from the picture or trans­
parency. 

3 Intersection of a verticle line from point 2 to the densitometer trace. 
The calculated baseline is a horizontal line from point 3. 

Figure 5- Method of determining the position of the baseline on the densito­
meter traces of urea, 2-mercaptoethanol, starch-gel electrophoretic 
patterns. 
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position, a line is drawn perpendicular to the bottom line of 

the chartJ on which the trace is drawn. The point at which 

this perpendicular crosses the trace is taken as the baseline 

position. In Figure (l) is the zero position, (2) the point 

at which the perpendicular is drawn and (3) the point of inter­

section of the perpendicular and the trace, i.e., the point at 

which the baseline is established, parallel to the bottom 

boundary of the chart. The disecting lines for the separation 

of the major components, on the traces, were checked with 

distances on the original pattern. No problems were encountered 

using this technique for the Nigrosine stained patterns. 

However, two caseinate fractions (lO min and 20 min) stained 

with amido black had minima between the a^- and g-casein peaks 

below the calculated baseline. In these cases, the baseline 

- • was drawn at the calculated point and the low minima were 

ignored. 

Disc electrophoresis The basic standard gel method 

of Ornstein and Davis (1961) as described in the Canalco 

Manual (revised March, I962), together with subsequent 

modifications described in the Canalco Disc Electrophoresis 

Newsletters, was used with two modifications. To prevent 

back diffusion of unpolymerized sample gel, which would cause 

a partial loss of sample, the gels were covered with about 

0.04 ml of spacer gel solution, which was covered with buffer 

(tris-glycine pH 8.3) and the gel then was photopolymerized. 
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The second modification was in the preparation of the sample 

gel solutions, from dry ingredients, with which HCl (Ornstein 

and Davis, 1961) rather than H^PO^ (indicated in the Canalco 

manual) was employed to adjust the pH of the buffer used with 

the upper gel. An attempt was made to use sucrose rather than 

sample gel in the disc electrophoresis experiments as suggested 

by Narayan _et (1964). However, the data implied that 

diffusion of some of the sample into the upper buffer compart­

ment took place so the method was abandoned. 

Electrophoresis was carried out at room temperature with 

a current density of 5 mA per tube (initial voltage 750-790, 

final voltage 6OO-65O when 12 tubes were used). The electro­

phoresis was completed in about 50 min. The procedure, as 

described in the Canalco Manual, uses no inhibitor in the lower 

gel thus speeding up the polymerization and eliminating 

wavy bands. Six tubes could easily be prepared at one time 

under these conditions when non-urea gels were used. Urea 

appears to speed up the polymerization; only four tubes 

could be prepared at one time. 

Dispersion of calcium caseinates for disc electrophoresis 

Disc electrophoresis without urea Three reagents 

for dispersing the caseinates were compared, namely, sodium 

oxalate, citric acid and disodium ethylenediaminetetra­

acetate (EDTA). The buffers used in the sample gel were 

changed to incorporate an excess of the above reagents as 
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follows: 

Trls-EDTA Buffer 

5.98 g Tris (2-Amlno-2(hydroxymethyl) 1-3 propanediol 

0.2 g EDTA 

2.0 N HCl, to adjust the pH to 6.90 (about 22.4 ml) 

Made to 100 ml 

Tris-Cltrate Buffer 

5.98 g Tri s 

1.0 M Citric acid, to adjust the pH to 6.90 (about 

15 ml ) 

Made to 100 ml 

Tris-oxalate buffer 

5.98 g Tris 

10.0 ml, 0.1 M sodium oxalate 

2.0 N HCl, to adjust the pH to 6.90 (about 24.0 ml) 

Made to 100 ml 

The sample gel solutions were prepared, using the above 

buffers, as described in the Canalco Manual. 

The caseinates were dispersed in the sample gel solutions 

(1.0 per cent protein), hydrated overnight at 4.4 0 and diluted 

with spacer gel to the desired concentration (usually 100 pg 

of protein 0.1 ml of sample gel solution). With the oxalate 

containing buffered gel solution, the calcium and magnesium 

oxalates were removed by centrifuging (lOOO x g) at room 

temperature for 10 min prior to diluting with spacer gel 
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solution. The electrophoresis was accomplished, using the 

standard gel procedure in the Canalco Manual. 

Disc electrophoresis with urea Two sample gel 

solutions were employed: l) Sample gel solution containing 

6.6 M urea and 2) sample gel solution l) containing oxalate. 

A number of variations in technique were also studied. In 

all cases, the sample gel solutions contained 6.6 M urea; 

these were used in conjunction with the spacer and lower gel 

combinations tabulated below. These combinations were used 

with both the oxalate-urea and urea sample gel solutions. 

Spacer gel 5-0 M urea. Lower gel 5.0 M urea 

Spacer gel 5.0 M urea. Lower gel 6.6 M urea 

Spacer gel 6.6 M urea. Lower gel 6.6 M urea 

Because the procedure for preparing the working gel 

solutions includes a final 1:1 dilution of the upper gel with 

water, or a catalyst solution in the case of the lower gel, 

some problems were encountered in attaining these high urea 

concentrations. The 5.0 M urea concentration in the spacer 

gel was obtained by diluting the premixed gel solution (see 

above) with an equal volume of aqueous 10 M urea solution. 

The lower gel containing 5-0 M urea was obtained by diluting 

the lower gel solution (solution l) with a catalyst solution 

(solution 2) that was 10 M in urea. 

The 6.6 M urea concentrations were prepared using a 

slightly different method, because urea, equivalent to a 
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concentration of 13.2 M is completely soluble only with 

heating. The lower gel solution 1 was made 3.2 M in urea so 

that the completed lower gel would be 6.6 M urea when mixed 

with an equal volume of solution 2 (catalyst) that was 10 M in 

urea. The premixed spacer gel (Canalco) was made 6.6 M in 

urea by adding 39.6 g of urea to 50 ml of undiluted spacer gel 

solution and diluting to 100 ml. The sample gel, prepared from 

dry ingredients,was made 6.6 M in urea by adding the urea when 

the stock solutions were mixed in the amounts stated in the 

Canalco Manual. The pH values of all the urea gel solutions, 

which increase slightly because of the urea, were adjusted with 

1.0 N HCl, to values given in the procedure pH 6.7-6.9 

for the upper gel, pH 8.7-9.0 for lower gel. In the case of 

the urea-oxalate dispersion, the same buffer was employed 

without urea. The caseinates were dispersed as described in 

the non-urea gel section. 

Disc electrophoresis with urea and 2-mercaptoethanol 

(MCE) The use of MCE.did not alter the basic procedure. 

MCE was added to the sample gel solution. (O.Ol ml/ml of 

solution) at least 3 hr before electrophoresis (Woychik, 1964). 

Preliminary experiments Indicated that MCE could not be added 

to the spacer gel because it completely inhibited photopoly-

merization. One of the fundamental requirements of disc 

electrophoresis is that the spacer gel must gel and have a 

perfectly flat minescus, therefore, MCE could not be used in 
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the spacer gel. Since Woychlk (1964) reported that It was 

not necessary to add MCE to acrylarnlde gels (Cyanogum)^ 

MOE was added only to the sample gel solution. 

Identification of bands In disc electrophoretlc patterns 

Polyacrylamlde gel (PAG) electrophoresis has not been used as 

extensively for casein as had urea starch-gel (USG) electro­

phoresis. The numbering system of Wake and Baldwin (1961) 

for USG electrophoresis has been employed for the bed type PAG 

electrophoresis (Thompson and Pepper, 1964, Thompson et al., 

1965), but little or no work has been done using the disc 

technique. The gel patterns obtained using 7.5 percent PAG 

are not identical with USG patterns (Woychlk, I965). The 

major objection to disc electrophoresis is the variability of 

the rate of tracking dye migration which results in reproducible 

patterns but not reproducible positions on the gel. This makes 

it impossible to use the Wake and Baldwin (196I) method of 

designating the bands on the basis of relative band positions. 

A simple numbering system, based on an Isoelectric preparation 

will be presented and used. 

Non-urea disc electrophoretlc patterns A schematic 

diagram of a non-urea pattern of isoelectric preparation is 

shown in Figure 6 (Pattern l). Ten bands, seven clearly 

defined, were obtained without urea. Band 1, Figure 6, 

Pattern 1, appeared on all gels and is in about the same 

position as the tracking dye or front. Since the tracking dye 
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1) Non-urea disc electrophoretic pattern of an isoelectric casein. 

2) Urea disc electrophoretic pattern of an isoelectric casein. 

3) Urea 2-mercaptoethanol disc electrophoretic pattern of a %-oasein 
preparation. 

Figure 6. Schematic diagrams of polyacrylamide disc electrophoretic patterns 
obtained in this study'. 
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was not fixed to protein and Is ionic. It Is electrophoresed 

from the gel during the destalnlng process. 

Nee 11 n, _et aJ.. (1962) suggests that the component moving 

with the front In USG could be the casein component of 

Long aJ.. (1958). Good resolution between a^- and g-caseln 

Is obtained and %-oaseln does not migrate Into the lower gel. 

Band 10j at the origin of the lower gel, may be the simpler 

polymers (or smaller aggregates) of h-casein that are able to 

migrate through the more porous upper gel but too large to 

penetrate the smaller pores of the lower gel. The major 

portion of the H-caseln and possibly other components (Neelln 

et al.J 1962) are trapped in the sample gel. 

Urea disc electrophoretlc patterns A schematic 

diagram of a urea pattern of an isoelectric casein preparation 

(No. 1) is shown in Figure 6 (Pattern 2). Seventeen bands, 

15 quite distinct, were obtained with excellent resolution 

although H-casein does not appear to migrate into the lower 

gels even in the presence of urea. In some cases a visible 

smear was obtained when high concentrations of the %-casein 

preparation were employed (> 100 |-ig of protein tube). The 

disc pattern of isoelectric casein correlates reasonably well 

with the USG pattern. Figure 1, especially as regards the 

major a^- and g-caseln bands, except that a sizable pre-

3-casein component (bands 9, Figure 6, Pattern 2) was observed. 

Similar variation in the minor banding was also observed. 
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Urea-mercaptoethanol (MCE) disc electrophoretlc 

patterns A schematic diagram of a urea-MCE pattern of 

H-casein is shown in Figure 6 (Pattern 3). Twelve bands were 

observed, the first 3 bands (l through 3, Figure 5, Pattern 3) 

may be contaminants in this K-casein preparation. Band 1 

(Figure 6, Pattern 3) is very faint compared to the correspond­

ing bands in Figure 6 (Patterns 1 and 2). Bands 2 and 3 

probably correspond to bands 7 and 8 in Pattern 2 and bands 6 

and 7 in Pattern 1, Figure 6. The general pattern agrees 

quite well with the ones separated by Woychik (1964, 19^5) 

for vertical bed type PAG. Further results obtained with disc 

electrophoresis using MCE were of little value, hence a 

schematic diagram of whole isoelectric casein is not included. 

Apparently MCE, which inhibits photopolymerization of the 

sample gel has some affect on the surface of the already 

polymerized spacer gel for the ag-oasein and p-casein bands 

were quite irregular, nonreproducible and unsuited for 

densitometry. No reason can be given for the fact that 

generally the ^bands were not affected. 

Densitometry of disc electrophoretic gels Densito­

metry, using the model E microdensitometer (Canalco, Bethesda 

l4, Maryland) was relatively simple. The B-filter position, 

for Amido Black stained gels, with the gain control set on the 

number.5 position (for a linear response of the optical 

density) and a slow chart speed (setting 9) was used. The 
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p 
intergrator, usually set to give a blip for every 20 mm 

was employed. In most cases, both the 2.0 and 0.2 optical 

density settings were used, because resolution of all bands 

could not be obtained at one sensitivity. However, the great 

differences in concentration between the major and minor bands 

made it impossible to measure them both at one sample concentra­

tion. Because the major bands only have been identified, sample 

concentrations that afforded good densitometer measurements of 

these bands were used (usually 100 fig protein tube). 

The magnification of the gels by the densitometer was 

3.6. The gels traveled across the slit apperature at the rate 

of 8.64 cm/min and the chart speed was l6.1 cm/min. These 

conditions gave a magnification for the tracing of 6.71. 

Efforts to correlate actual distances on the gel and traces, 

as was done with the USG-MCE patterns, proved unsatisfactory 

due to the difficulty in measuring distances on the disc 

gels. Therefore, an arbitrary method of dividing the traces 

was employed. 

Non-urea disc electrophoretlc patterns A typical 

densitometer trace of citric acid dispersed "native" calcium 

caseinate without urea is shown in Figure 7. The banding of 

the caseinates was not as sharp as for isoelectric casein, 

especially for g-casein. The bands between the a - and p-

casein bands were variable and some problems were encountered 

in background as well as in tailing of the major bands. A 
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Figure J. Method of dividing a typical polyacrylamide disc electrophoretic 
densitometer trace of citric acid dispersed native calcium casein-
ate without urea; optical density setting =.2.0. 
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number of arbitrary methods for dividing the tracing were 

tried and the method diagramed in Figure 7 was chosen. 

The method consists of extrapolating the slopes of the 

major peaks to baseline, the area under the tracing between 

the lines perpendicular to the chart baseline at the points 

at which the extrapolations cross the baseline was considered 

a - or p-casein. Relative areas were calculated using the 

intergrator. 

Urea disc electrophoretic patterns A typical 

densitometer tracing of native calcium caseinate in urea gels 

is shown in Figure 8. Both the low (a) and high (b) sensitiv­

ities are shown. The banding of the a^- and p-casein compon­

ents was much sharper than when urea was not used, especially 

as regards p-casein. No bands corresponding to bands 6, 7, 8 

and 9, Figure 6 (Pattern 2), were observed between a^- and 

p-caseln, hence the tracing reached the baseline between the 

two bands. The division between a^- and P-casein was taken 

at one-half the distance between the two maxima (Figure 8). 

Paint but discreet banding, obscured by slight smearing was 

obtained behind the 3-casein band, corresponding to bands 13 

through l6 in Figure 6 (Pattern 2). A consistent but arbitrary 

method for determining the division between the end of the 

p-caseln peak and the remainder of the trace was used. The 

usually straight slope on the trailing edge of the p-casein 

peak was extrapolated until it bisected the baseline (Figure 

8). A vertical line through this point was taken as the end 
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Figure ,8. Method of dividing a typical polyacrylaraide disc electrophoretic 
densitometer trace of native calcium caseinate in urea gels; 
optical density settings = 2.0 and 0.2. 
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of the 3-casein band. The high sensitivity trace (b-Plgure 8) 

could not be used to estimate the end of the g-casein band 

because In most cases this point had an optical density 

greater than 0.2. Relative areas under the traces were deter­

mined with the intergrator. 
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RESULTS AND DISCUSSION 

Elemental Analysis of the Supernatants and Sediments 

of Ultracentrifuged Skim Milk 

Total nitrogen and total solids contents of the calcium 

caseinate depleted supernatants 

The results of the total solids (TS) and total nitrogen 

(TN) analysis of the supernatants are given in Table 1. 

Non-casein nitrogen of the original skim milk was considered 

to be the TN of the whey resulting from centrifugation of skim 

milk for 20 hours, at 53,620 x and 0 C, and subsequent 

precipitation of the whey-soluble casein at pH 4.6; the value 

corrected for the dilution caused by the acid precipitation 

of the casein. The data in Table 1 are plotted in Figures 9, 

10, and 11. 

The depletion of casein (the "native" calcium caseinate). 

Figure 9 appears smooth. However, it should be noted that 

more caseinate was sedimented in 30 min using the differential 

centrifugation technique (serial depletion) than could be 

sedimented in 6o min of continuous centrifugation. Table 1, 

Figure 9. This probably results from a more efficient . 

sedimentation due to the decreasing calcium caseinate concentra­

tion in the serially depleted supernatants. No attempt was 

made to estimate the diameters of the caseinate micelles 

sedimented in a given fraction. The resulting micelle 

distribution. Figure 10, shows that the fraction sedimented 
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Table 1. Analysis of the supernatants obtained by differ­
ential ultracentrifugation of skim milk at 53,620 
X g and 0 C 

Centrifuging Total^ Total nitrogen^ % Casein % of total 
time in min solids mg/100 g skim removed casein in 

fraction 

Original skim 9.18 0.0 
0° 8.98 489.0 9.4 9.4 
10° 8.42 403.2 30.3 20.9 
20° 8.07 346.0 44.3 14.0 
30° 7.62 720.2 62.8 18.5 
40° 7.28 227.8 73.1 10.3 
55c d 

continuous^ 
7.05 205.9 78.5 5.4 55c d 

continuous^ 
6od 7.94 304.9 45.5 
70d 7.16 208.5 77.8 32.3 
80d 6.92 182.0 84.3 7.5 

20 hours 7.05 174.6 86.1 86.1 
I.E. Wheyi 6.38 117.6 100.0 13.9 

^•Grams/lOOg of sample. 

^Corrected using the factor of Davies and White (1960). 

1% : totS s -(•>« mtrogen/lOOg super, 

natant). 

^Differentially centrifuged skim milk supernatants, 
preceeding supernatant used for the next time increment. 

^Skim milk centrifuged for 60 min. The supernatant was 
centrifuged for 10 min (70) and the resulting supernatant 
centrifuged for 10 min (80). 

®Ultracentrifugal whey obtained by centrifuging skim milk 
for 20 hr. 

f 
Whey-soluble casein remaining in the 20 hour supernatant 

was precipitated at pH 4.6 with 1 N HOI. The total solids 
and total nitrogen values were corrected for the dilution of 
the acid and the total nitrogen value taken as the non-casein 
nitrogen content of the skim milk. 
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y/ 

during 10 min from the supernatant obtained during 60 min of 

continuous centrifugation (60+10 = 70-rain fraction) of skim 

milk is apparently a composite of the 30, 4o, and 55-min 

fractions. The results in Figure 10 show that 7 sequential 

caselnate fractions, were obtained; these did not include the 

70-min fraction and the non-micellar (whey-soluble) fraction. 

The fraction sedimented durln^/SO hours of centrifugation and 

containing 86.1^ of the topàl caselnate is a composite of 

these 7 sedimented fractions. 

It is interesting to note that the relationship between 

the TN and TS in''the supernatants is almost linear (Figure 11 ) 

for the range of micelles sedimented and the conditions 

employed. 

Elemental analysis of the sedimented and non-sedimented 

caselnate and casein fractions 

The analyses of the ultracentrifugal "native" calcium 

caselnate sediments and the isoelectrically precipitated whey 

soluble casein are shown in Table 2. The moisture values were 

employed to determine the analytical results on a dry basis. 

The variations in moisture from fraction to fraction are 

probably due to the fact that the internal surface area of the 

freeze-drying flasks and the amount of caselnate material in 

the flasks (variation irî the thickness of the shell of frozen 

fractions) was not constant. Calcium and total phosphorus 

decreased and total nitrogen Increased as micelle size 

decreased (Table 2); these results agree with those of 



www.manaraa.com

Table 2. Analysis of the freeze-drled differentially centrlfuged, at 53,620 x £ and 
0 Cj native calcium, caseinate fractions and Isoelectric whey soluble 
casein 

Dry basis 
Fractions®' ^ ^ Total Total calcium Total magnesium Total phosphorus 

Moisture nitrogen mg/g Oa/N mg/g Ca/Mg° mg/g Ca/TP^ TE/N^ 

0-mln 0 .95 13.81 25.9 0.188 1.79 8.78 20.4 1 .27 0.148 
10-min 1 .36 13.86 26.0. 0.187 1.93 8.15 20.2 1 .28 0.148 
20-min 2 .86 13.79 25.5 0.185 1.91 8.10 19.9 1 .28 0.148 
30-min 3 .97 14.07 24.9 0.177 1.69 8.96 18.6 1 .34 0.132 
40-min 1 .94 14.10 24.6 0.175 1.36 11.00 18.0 1 .37 0.127 
55-min 3 .70 14.18 23.8 0.168 1.20 12.05 17.4 1 .37 0.123 
60+10(70)--min 1 .04 14.07 24.4 0.174 1.45 10.20 18.3 1 .33 0.132 
60+10+10(80)-min 1 .32 14.19 22.0 0.155 1.09 12.25 13.8 1 .59 0.098 
20-hours 1 .16 13.99 25.5 0.174 1.44 10.60 20.0 1 .28 0.143 
I.E. whey sol. 0 .70 15.01 6.6 0.0438 
casein 

^For the method of isolating each fraction see methods section (pp. 42-46). 

^Weight ratios: (gA/lOOg)/(gB/100g). 

°Moles Ca/Moles Mg. 
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de Kadt and van Mlnnen (l9^3)j Hostettler _et (l9^9)j 

and Ford et aJ. (1955). The calcium:total nitrogen, calcium: 

total phosphorus, total phosphorus : total nitrogen, and 

total phosphorus : total nitrogen weight ratios generally 

decreased with micelle size. The magnesium contents, in 

general, decreased with micelle size while the molar Ca:Mg 

ratios increased with decreasing micelle size. The molar 

Ca:Mg ratio in the 20-hour fraction was 10.6, which is lower 

than the value reported by Alexander and Ford (1957) for 

twice washed (distilled water) caseinate sedimented at 18-20 C. 

They report a mean molar Ca:Mg ratio of l4.6 with a range of 

from 11.7 to 17.0. The low molar Ca:Mg ratio obtained in this 

study may reflect the differences in washing, twice by 

Alexander and Ford (1957) _V8. once in this study, and the 

temperature of which the centrifuging was done, 18-20 C vs. 

0 C in this study. 

Perhaps the most Important information in Table 2 is the 

phosphorus content of the isoelectric 'Whey soluble casein 

fraction. The total phosphorus (TP) in this fraction should 

be equivalent to the organic (ester-bound) phosphorus (OP) 

concentration, since this fraction was isoelectrically 

precipitated. The TN value is equivalent to the casein 

nitrogen (ON) concentration for the same reason. Ford et al. 

(1955) report a constant OP:CN ratio of 0.055 for all their 

differentially sedimented fractions obtained at 18-20 C. 
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Later Ford and Martinez-Mateo (1958) obtained the same ratio 

for the non-sedimented (18-20 C) whey-soluble casein recovered 

by isoelectric precipitation. The OP;ON ratio for the whey 

soluble casein fraction in this study was 0.0438, which is in 

good agreement with the data of Bohren and Wenner (1961), who 

report 0P:CN ratios for the whey soluble fraction obtained at 

4 and 20 C of 0.044 and 0.048, respectively. Yamauchi and 

Tsugo (1962) likewise obtained an OP:ON ratio of 0.048 for the 

whey-soluble casein fraction obtained at 20 0. Since p-

casein has a lower organic phosphorus content than a-caseln, 

0.6^ and 1.0$, respectively, and p-caseln is reportedly more 

soluble at temperatures below 30 C (Sullivan et al., 1955), 

the low OP:ON ratio for the whey-soluble casein fraction is 

undoubtedly a reflection of the Increased p-casein content in 

this fraction. This fact is substantiated by moving boundary 

and gel electrophoresis to be discussed in later sections. 

No explanation can be given for the discrepancy in the data 

of Ford and Martinez-Mateo (1958) and the data obtained in 

this study. 

Elemental Analysis of the Supernatant, "Wash" Water and 

Sediments of Skim Milk Gentrlfuged for 100 Hours 

at 144,700 X _£ and 0 0 

Total solids and nitrogen distribution of the supernatants 

and "wash" water 

The total solids and nitrogen distribution (Rowland, 1938) 

values for the original skim milk, ultracentrifugal whey (UCW) 
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obtained during 100 hours at 144,700 x g and 0 C, and the water 

with which the sedimented caseinate was washed, are summarized 

in Table 3. The data show that only 95-8^ of the total 

Table 3. Analysis of the original skim milk, supernatant and 
sediment wash water of skim milk centrlfuged for 100 
hours at 144,700 x £ and 0 C 

Fraction ^ Total 
solids 

Totals-
nitrogen 

Non-casein^ 
nitrogen 

Non-protein^ 
nitrogen 

Casein^ 
nitrogen 

Skim milk 9.15 529.9 120.1 31.2 409.8 
UCW^ 6.22 82.6 65.2 29.1 17.4 
Wash water^ 0.43 26.0 16.8 3.6 9.2 

^Reported as mg/lOOg skim milk using the correction factor 
of Davles and White (1960): 

loo : toSl l: fraotxon). 

^Ultracentrifugal whey from which 95.8$ of the total 
caseinate had been removed. 

^Redistilled water in which the sediment, caseinate, was 
redlspersed and resedimented using the same conditions. 

caseinates were removed with the conditions employed. The TN 

content of the supernatant (UGW) appears to be low, for the 

total nitrogen content of UC¥ should be greater (by the amount 

of nitrogen in the whey-soluble) than the non-casein in the 

original skim milk. The low TN in the UGW probably results 

from the fact that serum (whey) proteins are adsorbed on and . 

sediment with the caseinate micelles (Ford _et_^,, 1955). The 

NGN in the wash water is in agreement with this fact. It should 

be noted that some of the caseinates are lost during the washing 
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procedure so that the washed caselnate constitutes about 

93.5^ of the total caselnate compared with 95-8^ for the un­

washed caselnate. The sum of the non-protein nitrogen (NPN), 

In the supernatant and wash water, agrees well with the NPN 

In the original skim milk (32.3 mg NPN/lOOg skim milk vs. 

31.2 mg NPN/lOOg skim milk, respectively). Indicating that the 

washing procedure has probably removed all of the NPN from the 

sediment. However, the sum of the NGN In the supernatant 

and wash water Is only 68^ of the NGN In the original milk. 

Indicating that the washing procedure did not remove all of 

the adsorbed whey proteins. These data are In agreement with 

those of FordaJ. (1955). Assuming that all of the NPN 

has been removed, as suggested previously, by the washing 

procedure, the washed sediment still contains approximately 

7.6^ non-casein protein (NOP) In reasonable agreement with a 

value of 5.3^ calculated from the TN and NGN data reported by 

Ford _et aJ.. (1955), for their sediments. Their data also 

show that more NGP Is associated with the smallest micelles 

sedlmented which probably results from the Increased 

surface area that can adsorb NGP. 

Analysis of the sedlmented 100-hour caselnate 

The analyses of the washed and unwashed 100-hour sediments 

are summarized In Table 4. The washed sediments contained 

greater amounts of Ga, TP, and TN than the unwashed ones, which 

Is In agreement with the results of Ford ̂  aj.. (1955). Ratios 

calculated from the data of Ford ejt aj.. (1955) are: Ga:TP 1.62 
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Table 4. Analysis of the freeze-drled caselnates, washed and 
unwashed, sedimented during 100 hours at 144,700 x 
£ and 0 C 

Dry basis 
^ fo Total Total ' Total T Total ~ 

Fraction®' Moisture Nitrogen Calcium^ Magnesium" Phosphorus" 

W 100 hr 1.42 14.71 25.4 1.4l 18.0 
UW 100 hr 4.89 l4.40 24.8 1.34 17.5 

Ratios 
Calcium^ Calcium^ Phosphorus'^ Calcium^ 
nitrogen Phosphorus Nitrogen Magnesium 

W 100 hr 0.173 1.4l 0.122 10.8 
UW 100 hr 0.172 1.42 0.122 11.1 

®'For the method of isolating each fraction see methods 
section (pp. 42-46). 

^Reported as mg/g of sample. 

^Weight ratios. 

^Molar ratios. 

and 1.61, Ga:TN 0.184 and 0.203, and TP:TN 0.117 and 0.125 

for washed and unwashed sediments, respectively in comparison 

with Ca:TP 1.4l and 1.42, TP:TN 0.122 and 0.122, and Ca:TN 

0.173 and 0.172 for the washed and unwashed sediments obtained 

in this study. The molar Ca:Mg ratios are somewhat lower than 

the values reported by Alexander and Ford (1957), but are in 

agreement with the value obtained for the 20 hour fraction 

(Table 2). While there appears to be some difference in 

composition of the wediment from the 20-hour and 100-hour 
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washed caselnate fractions. Tables 2 and k, (especially as 

regards TN) there Is excellent agreement among the various 

ratios with the exception of the TP:TN ratio. It Is difficult 

to make further comparisons among the data in Tables 2 and k, 

because organic phosphorus and casein nitrogen values of the 

sediments were not determined. 

Moving Boundary Electrophoresis 

Comparison of various electrophoretic conditions employed 

A number of moving boundary electrophoretic conditions 

were employed with the 20-hour fraction and the results were 

compared with isoelectric casein preparation 1 (Table 5). 

Typical casein patterns were obtained for the 20-hour caselnate 

fraction regardless of the electrophoretic conditions employed. 

A low rather broad peak was observed ahead of the a-caseln 

peak. This peak, designated as unknown, had a high mobility 

(about -11 to -12 X 10 ̂  cm^volt ^ sec~^) and this is thought 

to be a salt complex rather than a protein component, since 

its mobility is so much greater than any known protein component 

in milk. In general, the mobilities of a- and p-caseln, 

obtained using a number of different conditions, are in 

reasonable agreement (Table 5) especially sample Nos. 3(6-ml 

cell, 0.50 protein) and 4 (2-ml cell, 1.0% protein). The 

a-casein mobilities obtained with the veronal-E.D.T.A. buffer, 

sample No. 1, Table 5, (similar to the buffer employed by 

Annibaldi, I960, I961) were slightly higher and in better 

agreement with the mobility obtained for a-caseln in isoelectric 
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Table 5» Moving boundary electrophoretic analysis of freeze-dried native calcium caseinat 

S ample^ pH at 23 C Res in Ohms Cell Time Mcfi 

No. Buffer sample buffer sample buffer size Volts,/cm (sec) uiS 

1 f 
veronal^E.D.T.A. 8.10 8.20 228 220 2-ml 8.87 3^60 

e 
veronal-oxalate 

5160 
2 e 

veronal-oxalate 8.17 8.25 228 222 6-ml 4.94 9900 
3 veronal-oxalate® 8.20 8.23 228 220 6-ml 5.17 6120 

g 
veronal-oxalate 

10170 
4 

g 
veronal-oxalate 8.17 8.20 226 220 2-ml 8.91 ^675 

5 
g 

veronal-oxalate 

veronal-oxalate®^ ̂ 
8.51 8.49 233 218 2-ml 8.99 

5400 
5914 

6 

g 
veronal-oxalate 

veronal-oxalate®^ ̂ 8.21 8.22 221 216 2-ml (^.59 3780 

f j 
veronal ' 

5640 
7 

f j 
veronal ' 8.14 8.17 228 2-ml 8.75 3852 

^Areas, determined by planimetry (average of 4 values), include the outer perimeter 

representing the electrophoresis cell. 

^Sample concentrations were 1.0^ protein (sample No. 2., 0.$% protein). 

'^Conductivity cell constant was 1.201. 

^Descending mobilities x 10 ^ cm^ volt ^ sec calculated from the false (e) bounds 

^Ascending pictures taken at about ^400 sec. 

^Dialized for 2k hr against two changes of standard veronal buffer (r/2 = 0.1). 

^Dialized for 2k hr against two changes of the same veronal-oxalate buffer (r/2 = 0. 

^Uot dialized. 

^Veronal-excess oxalate buffer (r/2 = 0.l802). 
3. Isoelectric casein, preparation 1. 
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re calcium caseinate sedimented during 20 hours at 53;^20 x g and 0 C 

- Relative areas % 
Time Mobilities of components descending ascending 

rolts./cm (sec) unknown a-^asein p-casein —a-casein p-casein Cc-casein p-casein 

/ 

8.87 3360 -12.45 -6.63 -2.91 77.0 23.0 
5160 -6.68 -3.05 73.0 27.0 66.5 33.5 

h.9k 9900 -6.82 -3.31 76.2 23.8 
5.17 6120 -11.90 -6.38 -2.95 82.2 17.8 

10170 -6.38 -3.07 80.9 19.1 
8.91 3675 -11.94 -6.33 -3.04 77.6 22.7 

5^00 -6.41 -2.99 75.1 24.9 64.3 35.7 
8.99 5914 -6.38 -3.19 
8.59 3780 -10.99 -6.81 -3.42 75.8 24.2 

56k) -6.68 -3.26 75.1 24.9 64.4 35.6 
8.75 3852 -6.82 -3.20 71.1 28.9 

e outer perimeter of the peaks (Gaussian distribution) to the bottom of the rectangle 

in). 

e false (e) boundary. 

(r/2 = 0.1). 

e buffer (r/2 = 0.1084) that was used to disperse the sample. 
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casein (standard veronal buffer), sample No. "J, Table 5j than 

when veronal-oxalate buffers were used (samples 3, 4_, and 5). 

However, there was more variation in relative areas of 

a- and p-casein with electrophoresing time when veronal-E.D.T.A. 

buffer was used. The mobilities obtained, when veronal-

excess oxalate buffer (sample No. 6, Table 5) was employed, 

were generally higher and more variable with electrophoresing 

time than when the "normal" veronal-oxalate buffers were used. 

The relative areas of a- and p-casein are in good agree­

ment among samples, despite the variations in electrophoretic 

conditions, except for sample No. 3, Table 5, in which a 6-ml 

cell was used with a sample concentration of 1.0$ protein. 

In general, y-casein peaks were not observed in the descending 

patterns although a small y-casein peak appeared in most of 

the ascending patterns. These y-casein peaks were ignored 

when they appeared only in the ascending patterns. Variations 

in relative areas of a- and 3-casein were observed between 

the ascending and descending patterns (Table 5), in agreement 

with Warner (1944), Krejci (1942) and Krejci ̂  aJ.. (l94l). 

The mobilities obtained for a- and p-casein in the 

caseinate samples are in good agreement with Tobias _et al. 

(1952b) who report mobilities of -6.35 and -3.34 x 10~^ cm^ 

volt"^ sec"^ for a- and p-casein respectively in unheated 

skim milk diluted 1:4, dialized•against veronal buffer pH 8.6, 

and electrophoresed using the same buffer. The mobilities are 

somewhat lower than the values reported by Hipp aJ. (1952) 
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who reported mobilities of -6.75 and -3.05 x 10"^ cm^ volt"^ 

sec~^ for a- and p-casein, respectively. It should be pointed 

out that these mobilities were obtained for the individual 

caseins by isolating them and determining their mobilities 

separately. 

On the basis of better agreement for the mobilities and 

relative areas of a- and p-casein between 1 and 1.5 hr electro-

phoresing time, veronal-oxalate buffer (previously described) 

with the 2-ml cell, 24 hr dialysis, and sample concentrations 

of 1.00 protein were employed in the remaining moving boundary 

electrophoretic analyses of caseinat.e_,.fractions. 

Moving boundary electrophoretic analysis of sedimented case-

inates and non-sedimented whey-soluble casein 

The electrophoretic analysis of the fractions are 

summarized in Table 6, and typical and atypical patterns are 

shown in Figure 12. In general, the results for the 0-, 10-, 

20-, 30-, 4o-, 55-, and 60+10(70)-min fractions are in 

agreement with the data in Table 5 for the 20-hour fraction. 

The data. Table 6, show no change in relative areas of a-

and p-casein, for the above mentioned fractions, as the 

micelle size changes. These data are in agreement with 

Hostettler jet aJ.. (19^9) and Heckman et al. (1958). However, 

the smallest micelle sedimented, 60+10+10(8o)-min fraction, 

shows an atypical electrophoretic pattern (Figure 12, II). 

A rather large peak is observed between the a- and p-casein 
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Table 6. Moving boundary electrophoretlc analysis, 2-ml cell, of freeze-àried differentia 

fractions and isoelectric whey soluble casein 

Q 
Fractions 

1% protein 
pH at 25 C Ees^(ohms) 

Volts/cm 

Time 

(sec) 

; 0 
Mobilities of casein cc 

Q 
Fractions 

1% protein sample buffer^ sample buffer Volts/cm 

Time 

(sec) unknom! a- X-

0 min 8.22 8.20 227 220 8.80 ^600 -12.02 ' -6.29 
5220 -6.34 _ •  

10 min 8.16 8.20 228 222 8.92 ^48o -12.51 -6.48 

5400 -6.54 -j 
20 min 7.95 8.02 229 221 8.77 3800 -12.00 -6.50 -j 

5400 -6.54 —J 
30 min 8.20 8.20 223 220 8.85 $600 -11.97 -6.53 

5400 -6.50 -j 
4o min 8.28 8. $8 223 219 8.54 ^600 -11.77 -6.22 .-i 

5400 -6.39 
55 min 8.22 8.32 226 220 8.66 $600 -12.69 -6.77 

60 + 10 (70) 
5400 -6.52 - •  

60 + 10 (70) 8.2^ 8.20 225 221 8.62 3800 -11.76 -6.30 
min 5$4o -6.30 -! 

60' + 10 + 10 . 8.22 8.350 222 219 8.69 3000 -12.24 -6.64 -4.96 -: 
(80) rain 

60 + 10 + 10 7.81 7.88 221 213 8.77 4o8o -6.72 -4s56 -1 
(2o) min 

-6.72 -4s56 -1 

5400 -6.73 -4.78 -1 

I.E. whey sol 8.19 8.20 22̂  219 8.63 3765 -11.30 -4.92 -1 
casein 6540 -5.24 -1 

I.E. whey sol 8.22 8.27 224 220 8.67 8̂4o -11.47 -4.72 -• 
casein 6660 -4.95 -I 

\reas, determined by planimetry (average of 4 values), include the outer perimeter 
representing the electrophoretic cell. 

b ) 
Ascending pictures taken at about 5I1OO sec. 

c 
For the method of isolating each fraction see methods section (pp. k2-k6). 

'^Conductivity cell constant was 1.201. 

^Descending mobilities x 10"^ cm^ volt"^ sec"^, calculated from the false (e) bounds 
t _ 
ail buffers were veronal-oxalate buffers (see methods section)^ (r/2 = 0.1084), exc 

standard veronal buffer, (r/2 = O.l), was used. Samples were dialized for 2k hr against 
g 
( ) Relative areas ($) a- plus g-casein = 100%. 
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, of freeze-dried differentially centrifuged, at 53,620 x g and 0 C, native calcium caseinate 

Qj "b 
Relative areas {%) of casein components ' 

me Mobilities of casein components descending ascending 

ec) unknown a- X- p- 7- a- X- . P- 7- a- X- P-

-12.02 -6.29 -3.13 75.9 24.1 

-6.34 -5.11 75.7 24.3 63.10 36.9 
80 -12.51 -6.48 -3.19 75.4 24.6 
DO -6.54 -3.14 75.3 24.3 64.9 35.1 
DO -12.00 -6.50 -3.08 77.3 22.7 
DO -6.54 -3.08 75.4 24.6 64.9 35.1 
DO -11.97 -6.53 -3.17 77.7 22.3 
DO -6.50 -3.08 75.9 24.1 65.5 34.5 
DO -11.77 -6.22 -2.82 76.6 23.4 
DO -6.39 -2.80 74.2 25.8 70.2 29.8 
DO .-12.69 -6.77 -3.15 76.8 23.2 
DO -6.52 -3.00 74.2 25.8 68.3 31.7 
00 -11.76 -6.30 -3.05 76.5 23.5 
ho -6.30 -2.99 74.8 25.2 64.8 35.2 
DO -12.24 -6.64 — 4.96 -3.27 56.J 

(75.4)® 
25.3 18.4 

(24.6) 
56.3 

(79.4) 
29.1 14.6 

(20.6) 
80 -6.72 -4.56 -3.04 56.6 

(72.6) 
22.0 21.4 

(27.4) 
54.9 
(77.4) 

29.0 16.1 
(22.6) 

DO -6.73 -4.78 -3.04 53.5 
(73.6) 

27.4 19.1 
(26.4) 

65 -11.30 -4.92 -2.86 -1.51 35.9 57.1 7.0 

4o -5.24 -3.03 -1.65 38.7 53.3 8.0 
ho -11.47 -4.72 -2.91 -1.30 32.1 59.0 8.9 
60 -4.95 -2.90 -1.45 37.7 52.6 9.7 29.5 58.4 

include the outer perimeter of the peaks (Gaussian distribution) to the bottom of the rectangle 

sction (pp. 42-46). 

ed from the false (e) boundary. 

ection), (r/2 = 0.1084), except for the isoelectric whey soluble casein fraction with which a 
dialized for 24 hr against two changes of the buffer used to disperse the sample. 
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Figiire 12. Moving boundary electrophoresis patterns, 2-ml 
cell, of freeze-dried differentially centrifuged, 
at 53,620 X ̂  and 0 C, of native calcium caseinate 
fractions and isoelectric whey-soluble casein 

l)^ A typical electrophoretic pattern of oxalate 
dispersed calcium caseinate, protein concen­
tration 1.0^. The 20-min caseinate pattern 
is shown. Similar patterns were obtained with 
the 0, 10, 30, 40, 55, and 60+10(70)-mln 
fractions as well as the 20-hour fraction. 

11)^ The atypical electrophoretic pattern obtained 
with the 60+10+10(80)-min caseinate fraction, 
protein concentration 1.0^, 

III)^ The atypical electrophoretic pattern obtained 
with the isoelectric whey-soluble casein 
fraction, protein concentration 1.0^. 

^Por the method of Isolating each fraction see methods 
section (pp. 42-46). 
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peaks which is not completely resolved from the a-casein peak. 

This intermediate peak is designated "X"-ca8ein_, since a number 

of workers (Larson, 1958, Kenyon and Jenness, 1958, and 

McKenzie and Wake, 1959a) have reported a similar unidentified 

component in this region and Larson (1958) has used the term 

"X"-casein. The mobility of this X-casein component (Table 6) 

is in reasonable agreement with the mobility of p-lactoglobulin 

(-5.09 X 10"^ cm^ volt"^ sec"^) reported by Tobias ̂  al. 

(1952b) in skim milk diluted 1:4. The adsorption of whey 

proteins on the small micelles which cannot be completely 

removed with the washing procedure employed (Table 3: Ford 

_et aJL., 1955), suggests that the X-casein component may be, 

wholly or partly, p-lactoglobulin. However, the large 

relative area of this component in the 80-min fraction suggests 

that the X-casein component cannot all be p-lactoglobulin. 

The whey-soluble casein fraction also exhibits an atypical 

electrophoretic pattern (Figure 12, III). No peak with a 

mobility comparable to a-casein is observed. The mobility of 

the first peak suggests that it is the X-casein component. A 

large p-casein peak is observed which accounts for more than 

50^ of the total pattern (compared with 25^ in a typical 

casein pattern). The ascending relative areas of a-, p-, and 

y-casein (Table 6) are in excellent agreement with the values 

reported by Bohren and Wenner (196I) for a whey-soluble 

casein precipitated with CaClp from ultracentrifugal whey 
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obtained during 300 min at $0,000 x g and 4 C. A definite 

Y-casein peak is observed in the descending, as well as in 

the ascending, whey-soluble casein pattern (Figure 12, III): 

Y-casein is not observed in the descending patterns of any of 

the other fractions. Hipp _et aJ.. (1952) report that P- and 

y-casein are more soluble at low than at high temperatures, 

thus the increase in y-casein as well as g-casein in the whey-

soluble casein fraction may result from their greater 

solubilities at low temperature (Sullivan _et aJ., 1955, Hipp 

et al., 1952, and Bohren and Wenner, 1961), Hansen _et al. 

(1962) report descending, moving-boundary, electrophoretic 

patterns for "non-micellar" casein obtained by a Rowland 

(1938) fractionation of ultracentrifugal whey obtained during 

a 10 hr centrifugation at 55^150 x £ and 0-2 C. The 

mobilities reported by Hansen ̂  a^. (1962) are in agreement 

with the mobilities' obtained for whey soluble casein in this 

study (Table 6), except for the mobility of y-casein. They 

report a mobility of -2.05 x 10"^ cm^ volt ^ sec ^ for 

y-casein _v8. about -I.50 x 10~^ cm^ volt"^ sec~^ in this study. 

Hansen e_t aJ.. (1962) report l4.5, 82.5 and 2.90 for X-, 

p-, and Y-casein respectively in contrast with 35; 55; and 100 

respectively obtained in this study. However, Hansen _et al.. 

(1962) were not specific as to the method of analyzing their 

patterns. 

In general, the electrophoretic results obtained for the 
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whey-soluble casein fraction in this study are in agree­

ment with the results of Bohren and Wenner (1961) with 

one exception, they do not report mobilities of their casein 

components as such. They presented patterns of whey-soluble 

casein to which a known amount of whole isoelectric casein 

has been added. They conclude from the first peak in the 

pattern of the combined caseins and the whey-soluble casein 

that this component had the same mobility as ^-casein. This 

is not in agreement with the mobilities, calculated directly, 

for this component in this study nor the mobilities reported 

by Hansen _et (1962) for the first component in "non-

micellar" casein. It is Interesting to note that Hansen et al. 

(1962) list this first peak in their "non-micellar" casein as 

p-lactoglobulin but suggests that it could be the X-casein 

component observed by Larson (1958). There is a strong 

possibility that the X-casein component in the 80-min fraction 

(Figure 12) is the same component as the X-casein component in 

the whey soluble casein fraction, since their mobilities are 

in good agreement (Table 6). Because the whey-soluble casein 

fraction is an isoelectric preparation, it would appear that 

only a small part, if any, of the X-casein component, can be 

g-lactoglobulin. Gel electrophoresis data, to be presented, 

indicate that whey-soluble casein is almost devoid of a^-

casein. It is possible that the X-casein component could be 

%-caseln. Swalsgood and Brunner (1962) and Zittle and Custer 
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(1963) report the mobility of ^-casein to be comparable to that 

of a-casein. The mobility of the X-fraction is lower than 

that of a-casein. This suggests the possibility that the 

lower mobility of the X-fraction could result from an inter­

action between and p-casein. McMeekin _et (l957) 

reported separating a new a-casein fraction which they termed 

_c 2 
ttg-casein. This fraction had a mobility of -5.0 x 10 ̂  cm 

- 1 - 1  volt sec which is approximately the mobility obtained for 

the X-casein component in this study. The ag-casein is 

reported to have properties (calcium-insensitive; split by 

rennin) similar to ^--casein isolated by Waugh and von Hippel 

(1956). The nomenclature committee on milk proteins (Brunner 

_et a^.j i960) lists a^-casein with %-casein. 

Gel electrophoresis has shown that the %g-casein: %-

casein ratio has been altered in whey-soluble casein. This 

supports the contention of a ^-casein-p-casein interaction. 

If this is true, the addition of whole isoelectric casein to 

whey-soluble casein to compare mobilities (Bohren and Wenner, 

1961) could reestablish a normal cc^-casein: ^-casein ratio 

and yield a mobility for the X-casein + a-casein that might -• 

appear to be the same as the mobility of a normal a-casein. 

Moving boundary electrophoresis of calcium caseinate in the 

presence of urea 

Little if any work has been reported on the use of high 

urea concentrations in moving boundary electrophoresis of 
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caseins or caseinates. The 20-hour caseinate fraction was 

electrophoresed in veronal buffer containing 5-0 M urea and 

the patterns are shown in Figure 13. The calcium caseinate 

was easily dispersed in the veronal-urea buffer and the sample 

was not dialized. The sample concentration was 1.0^ protein. 

The rather large false boundaries (e peak) that were obtained 

probably reflect the high urea concentrations used and the 

fact that the sample was not dialized. The patterns (Figure 13) 

show the disaggratlng effect of the urea on the caseinate and 

show as many as 12-13 peaks In the descending pattern. 

The patterns were not analyzed because of the excessive 

number of peaks. Mobilities were not determined because of the 

extremely slow migrations rates obtained which may have 

resulted, from the high viscosity of the buffer. No further 

experiments, using urea buffers, were performed by moving 

boundary. 

Moving boundary electrophoretic analysis of "total" washed 

and unwashed calcium caseinate 

The results of moving boundary electrophoresis of the 

100-hour washed and unwashed calcium caseinates (sedlmented at 

144,700 X g and 0 C) are summarized in Table 7, The results 

are in reasonable agreement with the data in Tables 5 and 6 

with two exceptions; 1) y^caseln peaks were obtained in the 

descending patterns of the washed 100-hour fraction (in 

veronal-oxalate and veronal-excess oxalate, buffers) samples 
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Figure 13. Moving boundary electrophoretic pattern, 2-ml 
cell, of the 20-hour native calcium caselnate 
fraction In veronal buffer containing 50 M 
urea, protein concentration 1.0^. 
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Table 7» Moving boundary electrophoretic analysis, 2-ml cell, of freeze-dried, washed and 

during 100 hours at l^+it-^TOO x g a^d 0 C 

pH at 23 C of Res (ohms) Time Mobilities of caseiij 

Fractions sample buffer sample buffer Volts/cm (sec) unknown a- X-

100-hour W 8.31 8.34 22lj- 220 8.83 3930 -11.96 -6.29 

5522 -6.kk 

100-hour ¥ 3.22 8.23 221 215 8.65 3780 

5^60 

-10.49 -6.27 -4.4l 

-6.46 -4.38 

100-hour IM 8.4c 8.38 228 223 8.67 3600 
5520 

-11.95 -6.38 
-6.39 

Areas, determined by planimetry (average of 4 values), include the outer perimeter 

rectangle representing the electrophoresis cell. 

^Conductivity cell constant = 1.201. 

"^Descending mobilities x 10 ̂  cm^ volt ^ sec calculated from the false (e) boundaf 

^Ascending pictures taken at about 5400 sec. 

^Dialized for 24 hours against two changes of the same veronal-oxalate buffer (r/2 =4 

( ) Relative areas {%) a- plus p-casein = 

^Dialized for 24 hours against two changes of veronal-excess oxalate buffer (r/2 = oj 
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1 and 2, Figure l4 and, 2) an X-casein component is barely 

visible in the descending 100-hour washed caseinate pattern, 

sample 2, Figure 14, when excess oxalate is used in the buffer. 

As regards the y-caseln peak in the descending pattern of 

the washed caseinate sample, the presence of y-casein probably 

reflects the fact that this fraction contains about 93-5^ of 

the total caseinate _vs. 86.1^ of the total caseinate in the 

20-hour fraction. However, the fact that a y-casein peak is 

not visible in the unwashed 100-hour fraction suggests that 

y-casein is not lost during the washing procedure and the 

presence of more adsorbed serum (whey) proteins in the unwashed 

caseinates may mask the y-oasein peak in the descending pat­

tern. It should be pointed out that y-casein peaks are 

observed in all ascending patterns. The presence of an X-

casein component in the descending patterns of the washed 

caseinate, electrophoresed in the presence of excess oxalate 

is puzzling. The mobility of this X-casein is lower (about 

-4.4 jvs. -5.0 X 10"^ cm^ volt"^ sec~^) than had been obtained 

in the 80-mln and isoelectric whey-soluble fractions (Table 6). 

The X-casein peak is extremely small and could be a salt 

abnormality due to the excess oxalate. However, its magnitude 

is about the same as for y-casein and no X-casein peak was 

observed in the 20-hour fraction when it was electrophoresed 

in the presence of excess oxalate. If this peak is indeed a 

protein component, it is apparent that it exists in the micelle 
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Figure l4. Moving "boundary electrophoretlc patterns, 2-ml 
cell, of freeze-dried, washed (¥) and unwashed 
(U¥), native calcium caseinate fractions sedi-
mented during 100-hours at 144,700 x ̂  and 0 C 

l)^ 100-hour ¥ calcium caseinate, protein con­
centration 1.0^. 

II100-hour ¥ calcium caseinate, protein con­
centration 1.0^. 

III)^ 100-hour U¥ calcium caseinate, protein con­
centration 1.0^. 

^For the method of isolating each fraction see methods 
section (pp. 42-46). 
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range between 85^ (amount of caseinate in the 20-hour fraction) 

and 93.5^ (amount of caseinate in the 100-hour fraction) 

of the total caseinate. 

The mobilities (Table 7) of a-^ 3-, and y-caseins are in 

general agreement with the mobilities obtained, for these 

caseins, with other caseinate fractions (Tables 5 and 6). 

The relative percentages of these caseins are also in agree­

ment with the exception of the 100-hour ¥ (5460 sec) pattern, 

using veronal-excess oxalate buffer, which appears to contain 

slightly more a-casein, when a- plus p-casein is taken as 

100^. The 100-hour ¥ ascending patterns, with veronal-

oxalate • and veronal-excess oxalate buffers, appear to contain 

more a-casein than the 100-hour U¥ ascending pattern when the 

a- plus p-casein contents only are considered. 

Starch-Gel Electrophoresis 

There are a number of empirical observations that can be 

made from the photographs of the gels or the gels themselves. 

The banding seems to be much more distinct when the gels are 

stained with Nigrosine rather than with Amido Black; this is 

particularly true for the pre-ag-casein bands. However, for 

densitometry, Nigrosine does not appear to be as satisfactory 

as Amide Black because of the much darker background. Further 

observations, with regard to urea starch-gel patterns, are 

discussed in the sections that deal with urea starch-gels, 

with and without the addition of 2-mercaptoethanol. 
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Urea starch-gel (USG) electrophoretlc patterns 

The minor components (Figures 15 and l6) pre-a^-oaseln 

("bands 1 through 4)^ pre-p-casein (bands 9 and 10) and bands 

l4 through 17, are quite distinct for the more rigorously 

treated, isoelectric casein preparations, but are either 

absent or tend to smear in the "native" caseinate preparations. 

This is especially true of bands l4 through l6 (Figures 15 

and l6). However, bands l4, 15j and l6 are observed in the 

100-hour washed sample (Figure l6, slot No. 7), indicating that 

possibly these components are concentrated in the micelle 

sizes located between 86 and 93 percent of the total caseinate, 

since the 20-hour fraction contains about 86 percent of the 

total native caseinate, while the 100-hour fraction contains 

93 percent of the total native caseinate. Because different 

pooled milks are involved here, band 17 (Figures 1 and l6) may 

result from variations between milks. Band 17 is not sharp 

on the isoelectric whole casein (Figure l6, slot 1 and 2) 

and it could be masked by the darker smearing in this region 

on the native caseinate patterns (Figures 15 and l6). The 

whey-soluble portion of the caseinates (precipitated at pH 

4.6 with 1 N HOI from the supernatant of skim milk centrifuged 

20 hours, 53j 620 x £, 0 0), which constitutes about l4 

percent of the total native caseinates (Figure l6, slot No. 4), 

shows virtually no major a, -casein component. It does show 

discernible banding in the 0.47 and 0.54 relative band region 

(between bands 13 and l4. Figures 1 and 15). This apparent 
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Figure 15. Horizontal urea-starch gel electrophoretic 
patterns of caseins and native calcium caseinate 
fractions 

Electrophoretic conditions: The basic procedure 
.of Wake and Baldwin (1961) was employed. Gel 
size l4 X 22.3 X 0.6 cm_, potential I80 volts 
(40 mA), borate line migrated 12 cm beyond the 
sample slot. All fractions were dispersed in 
6.6 M urea-tris-citrate buffer, pH 8.6. 

Plate 1 A Nlgroslne stained. 
Plate 1 B Amido Black stained. 

Samples^ (slot No. and sample protein concentra­
tion): 

1) Isoelectric casein, preparation 1, 2.0%; 
2) Isoelectric casein, preparation 1, 1.0%; 
3) ttg-casein, 0.^%>; 4) isoelectric whey soluble 

casein, 0.75%; 5) ̂ -casein, 1.0%; 6) 20-hour 
caselnate fraction, 1.5%; 7) 100-hour W 
caseinate fraction, 1.5%; 8) 100-hour U¥ 
caseinate fraction, 1.5%-

For the method of isolating each fraction, see methods 
section (pp. 42-46). 
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Figure l6. Horizontal urea starch gel electrophoretic 
patterns of differentially centrifugea, at 
53,620 X £ and 0 G, native calcium caseinate 
fractions 

Electrophoretic conditions: The basic procedure 
of Wake and Baldwin (196I) was employed. Gel 
size l4 X 22.3 ̂  0.6 cm, potential 18O volts 
(40 mA), "borate line migrated 12 cm beyond the 
sample slot. All fractions were dispersed in 
6.6 M urea-tris-citrate buffer, pH 8,6. 

Plate 2 A Nigrosine stained. 
Plate 2 B Amido Black stained. 

-| 

Samples (slot No. and sample protein concentra­
tion): 

1) 0-min fraction, 1.5^j 2) 10-min fraction, 
1.5^J 3) 20-min fraction, 1.5^j 4) 30-min 
fraction, 1.5^; 5) 40-min fraction, 1.5^; 
6) 55-min fraction, 1.5^; 7) 60+10(70)-min 
fraction, 1.5^; 8) 60+10+10(80)-min fraction, 
0.75#. 

^Por the method of isolating each fraction see methods 
section (pp. 42-46). 
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decrease in the quantity of a^-caseln agrees with the data 

presented In the section concerning moving boundary electro­

phoresis and likewise with the moving boundary electrophoretlc 

results of Bohren and Wenner (1961) for the caselnate fraction 

not sedlmented at low temperature. Sullivan et al. (1955) 

had previously reported that p-caseln Is depolymerlzed (more 

soluble) at low (4.4 C) than at high (25-30 C) temperatures a 

fact supported by Waugh (1962) who found that the minimum 

conditions for stable micelle formation are a^-, %-caseln, and 

divalent cations and that p-caseln Is Incorporated Into the 

micelle as the temperature is increased. It is Interesting 

to note that the bands in the 0.47 and 0.54 relative band 

region may correspond to the major K-casein bands in the USG-

MCE patterns (Figure 2_, p. 63) despite the fact that the 

relative band positions do not agree because of the effect of 

MCE on the relative band positions in this region (to be 

discussed in the following section). USG patterns, of the 

whey-soluble casein fraction, also show very intensive banding 

in the region of bands l4, 15 and 16 (Figures l and 15), 

especially as regards band I6. If the suggestion of Wake and 

Baldwin (1961), that these bands are related to y-casein, is 

correct, bands l4, 15 and I6 (Figure 15, slot No. 4) suggest 

that y-casein concentration may be dependent on the micelle 

size. However, Hipp _et _al. (1952) indicated a close similarity 

between 3-caseln and y-casein based on their solubilities at 
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2.5 and, 25 G. These data confirm the results with moving 

boundary electrophoresis for this fraction (whey-soluble casein) 

in which a well defined y-casein peak was obtained (Table 6). 

The densitometric data (Table 8, Appendix, Table 17) show 

Table 8. The ag- and p-casein contents of isoelectric casein, 
ag-casein and native calcium caseinate fractions 
based on densitometry of transparencies of urea 
starch gel electrophoretic patterns®- (a - plus 
3-caseln = 100^) 

Amldo black stain Nlgroslne stain 

c ^ Fractions in 
Protein relative ' relative 

c ^ Fractions in sample a -casein p-casein ttg-casein 3 -casein 

0-min 1.5 45.0 55.0 46.4 53.6 
10-min 1.5 44.4 55.6 45.1 54.9 
20-mln 1.5 47.7 52.3 46.9 53.1 
30-min 1.5 44.4 55.6 43.2 56.8 
40-min 1.5 44.4 55.6 48.7 51.3 
55-mln 1.5 47.5 52.5 47.0 53.0 
60+10(70)-min 1.5 46.7 53.3 44.8 55.2 
60+10+10(80)-

45.5 min 0.75 46.9 53.1 45.5 54.5 
20-hour 1.5 46.0 54.0 43.3 56.7 
I.E., whey-sol 

96.4 casein 0.75 3.6 96.4 5.0 95.0 
100-hour W 1.5 46.1 53.9 44.2 55.8 
100-hour UW 1.5 49.6 50.4 49.0 51.0 
ag-casein 0.5 95.8 4.2 95.8 4.2 
I.E. casein^ 
I.E. casein" 

2.0 47.0 53.0 56.3 53.7 I.E. casein^ 
I.E. casein" 1.0 49.1 50.9 49.0 51.0 

All samples were dispersed in 6.6 M urea-tris-citrate 
buffer (pH 8.6). 

^Transparencies correspond to the pictures in Figures 17 
and l8. 

^Average of two values, densitometer zero set just ahead 
of the borate boundary and the ag-casein band. (See Appendix, 
Table 17.) 

°For the method of isolating each fraction see methods 
section (pp. 42-46). 

^Isoelectric casein preparation 1. 
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reasonable agreement between Amldo Black and Nlgroslne 

stained patterns with the exception of the 40-min fraction. 

The data (Table 8) show some variation, especially for 

the Nigrosine stained patterns, with varying micelle size. 

However, no trend is evident. The 100-hour unwashed fraction. 

Table 8, appears to contain more a^-casein (or less p-casein) 

than the 100-hour washed fraction. This may be due to inclu­

sion of a whey protein contaminant in the a^-casein bands or 

to the loss of a component in the wash water. Some variation 

in ttg-casein and/or p-casein content is noted for the iso­

electric casein preparation (Table 8) possibly due to casein 

concentration (l.O percent jvs. 2.0 percent) differences. 

However, the variation in ttg-casein and/or p-casein, noted 

above, is not sufficient to suggest that a - and p-casein 

contents of the 60+10+10(8o)-min fraction are in error 

because of concentration differences (0.750 protein 1.5^ 

protein for the other caselnate fractions. Table 8). 

Urea-mercaptoethanol starch-gel (USG-MCE) electrophoretic 

patterns 

A few problems were encountered in maintaining a straight 

borate boundary during electrophoresis when MCE was used, 

especially if all the samples were caseinates. For this 

reason, the borate boundary was allowed to migrate only 10 cm 

from the sample slot, instead of the usual 12.0 cm, on gels 

containing eight caselnate samples (Figure 17). The resulting 
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Figure 17. Horizontal urea-2-mercaptoethanol starch-gel 
electrophoretic patterns of differentially 
centrifugedj at 53,620 x £ and 0 C, native calcium 
caseinate fractions 

Electrophoretic conditions: The basic procedure 
of Wake and Baldwin (196I) as modified by 
Neelin (1964) was used. Gel size l4 x 22.3 
X 0.6 cm, potential I80 volts (40 mA)^ borate 
boundary migrated 10 cm beyond sample slot. 
All samples were dispersed in 6.6 M urea-tris-
citrate buffer, pH 8.6, and 0.01 ml of 2 
mercaptoethanol added/ml of sample at least 
3 hr before electrophoresing (Woychik, 1964). 

Plate 3 A Nigrosine stained. 
Plate 3 B Amido Black stained. 

Samples^ (slot No. and sample protein concentra­
tion): 

1) 0-min fraction, 1.5^j 2) 10-min fraction, 
1.5^; 3) 20-min fraction, 1.5#; 4) 30-mln 
fraction, 1.5^j 5) 40-min fraction, 1.5$; 6) 
55-min fraction, 1.50; 7) 60+10(70)-mln fraction, 
1.5$; 8) 60+10+10(80)-min fraction, 0.75#. 

%or the method of isolating each fraction see methods 
section (p. 42-46). 
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patterns are in general agreement with caselnate samples on 

gels in which the borate boundary migrated 12,0 cm (Figures 

18 and 19). The only observed difference was a slight 

decrease in relative band positions of the p- and K-casein 

components (for %-casein from 0.39 to 0.64 vs. 0.48 to 0.77). 

All caseinate samples did show typical %-casein patterns, 

(Figures 17^ I8, and 19). However, some smearing was still 

observed. In general, all USG-MCE patterns (Figures 17^ I8, 

and 19) were not as clear as the USG patterns (Figures 15 

and 16) due to darker backgrounds. All caseinate fractions 

show a large pre-p-casein band, 0.94 relative band position, 

for a 12-cm borate boundary migration (Figures 18 and I9) and 

,0.86 for a 10-cm migration (Figure 17) at about the No. 10 and 

11 band position of Figure 2 (p. 63). This band probably is 

p-A casein and despite some uncertainty, it is included in the 

p-casein fraction in the densitometer analysis of the 

patterns. Both isoelectric casein preparations, 1 and 2, 

Figure 18, contained band I8 of Figure 2(p. 63), 0.39 and O.65 

relative band positions respectively. Caseinates obtained in 

100 hours at 144,700 x g and 0 0 did show band I8 (Figures 18 

and 19), the washed sample showing it more clearly. These 

results suggest the possible micelle-size dependence of band 

18. However, since three different milks are involved and the 

whey-soluble casein fraction (Figures 18 and 19, slot No. 4) 

contained no band I8, there is a possibility that band I8 is 
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Figure l8. Horizontal urea-2-mercaptoethanol starch-gel 
electrophoretic patterns of Isoelectric casein, 
Œg-oasein, w-casein, and native calcium caseinate 
fractions 

Electrophoretic conditions: The basic procedure 
of Wake and Baldwin (196I) as modified by 
Neelln (1964) was used. Gel size l4 x 22.3 x 
0.6 cm, potential I80 volts (40 mA), borate 
boundary migrated 12 cm beyond sample slot. 
All samples were dispersed In 6.6 M urea-trls-
cltrate buffer (pH 8.6), except the caseinate 
fractions which were dispersed in 6.6 M urea-
trls-cltrate-oxalate buffer (pH 8.6). All 
Samples contained 0.01 ml of 2-mercaptoethanol/ 
ml of sample added at least 3 hr before electro-
phoreslng (Woychik, 1964). 

Plate 4 A Nlgroslne stained. 
Plate 4 B Amido black stained. 
Plate 4 C Nlgroslne stained. 

Samples^ (slot No. and sample protein concen­
tration): 

1) Isoelectric casein preparation 2, 1.5^; 2) 
isoelectric casein preparation 2, 0.75^; 3) 
tts-casein, 0.5%', 4) isoelectric whey soluble 
casein, 0.5^; 5) %-casein, 0.21^; 6) 20-hour 
fraction, 1.5^; 7) 100-hour ¥ fraction, 1.5^; 
8) 100-hour UIAT fraction, 1.5^; lA) isoelectric 
casein preparation 1, 2.0^; 5A) %-casein, 1.0$. 

^For the method of isolating each fraction see methods 
section (pp. 42-46). 
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Figure 19. Horizontal urea-2-mercaptoethanol starch-gel 
electrophoretle patterns of isoelectric casein, 
ag-caseln, K-casein and native calcium caseinate 
fractions 

Electrophoretlc conditions: The basic procedure 
of Wake and Baldwin (1961) as modified by 
Neelin (1964) was used. Gel size l4 x 22.3 x 
0.6 cm, potential I80 volts (40 mA), borate 
boundary migrated 12 cm beyond the sample slot. 
All samples were dispersed in 6.6 M urea-tris-
citrate buffer (pH 8.6) and 0.01 ml of 2-
mercaptoethanol/ml of sample added at least 3 
hr before electrophoresing (Woychik, 1964). 

Plate 5 A Nigrosine stained. 
Plate 5 B Amldo Black stained. 

Samples^ (slot No. and sample protein concen­
tration) : 

1) Isoelectric casein preparation 2, 1.5^j 
2) isoelectric casein preparation 2., 0.75^; 
3) ag-oasein, 0.5^j 4) isoelectric whey soluble 
casein, 0.5^; 5) w-casein, 0.21^; 6) 20-hour 
fraction, 1.3%s 7) 100-hour ¥ fraction,, 1.5^; 
8) 100-hour U¥ fraction, 1.5^. 

^For the method of isolating each fraction see methods 
section (pp. 42-46). 
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a genetic variant of k-casein. The three milks are all pooled 

samples from the same herd so it would seem fortuitous that 

differences in genetic variants could be detected. Band l8 

appears in the %-caseln fraction at 1.0# concentration 

(Figure l8, slot No. 5A) but not at the 0,21^ concentration 

(Figures l8 and 19, slot No. 5). Band 18, in this K-casein 

fraction, may be a contaminant which would support the conten­

tion that this band is micelle size dependent. Band 20 of 

Figure 2 (p. 63) appeared only on patterns of whole isoelectric 

casein (preparations 1 and 2., Figures I8 and 19), suggesting 

that it may be an artifact of the method of isolation or 

result from the effect of MCE. The band appears much darker 

than the corresponding one reported by Wake and Baldwin (196I) 

for a few of their Isoelectric preparations. They also report 

this band in alcohol fraction C of Hipp's _et aJ. (1952). 

Wake and Baldwin (1961) did not use MCE. Bands 18 and 20 of 

Figure 2 (Figures 17, 18, and 19) appear to correspond to 

bands 15 and I7 of Figure l(p. 61) in the patterns without MCE. 

Band 19 of Figure 2 (No. 16 without MCE, Figure l) 

appears in every sample except a - and %-caseln (Figures 17, 

18, and 19) and is probably, as suggested in the previous 

section, related to y-casein. Wake and Baldwin (1961) report 

a greatly intensified band in this position, without MCE, in 

the alcohol fraction C of Hipp's ejt aJ. (1952). By a visual 

observation, the Intensity of band 19 in the 100-hour washed 
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caselnate fraction and the whey-soluble fraction (Figures l8 

and 19) appears to be high. These.results are in agreement 

with the data obtained by moving boundary electrophoresis 

(Table 6) suggesting either that y-casein occurs in restricted 

micelle sizes or it is more soluble at low temperature. 

A comparison can be made between two methods of dispersing 

caseinates fractions for USG-MCE electrophoresis. The caseinate 

fractions, 20-hour and 100-hour washed and unwashed fractions, 

(Figure 18) were dispersed in urea-tris-citrate-oxalate buffer 

and the calcium oxalate removed by centrifugation; the same 

caseinates (Figure 19) were dispersed in urea-tris-citrate 

buffer. The two sets of patterns (Figures 18 and 19) appear 

similar, especially as regards %-casein resolution. However, 

the washed caseinates dispersed without oxalate appear to have 

more intense but less diffuse a - and g-casein bands. The 

unwashed (100-hour) fraction gel pattern in both methods 

(Figures 18 and 19) show poorly defined %-casein bands. 

The cCg-, 3- and H-casein values obtained for isoelectric 

casein, preparations 1 and 2, Table 9, are in general agreement 

with the values reported in the literature (Table 10). The 

data of Tessier _et a^. and Rose (Table 10) show a wide range 

of values. However, Rose and Marier (1963) have questioned 

the uniformity of K-casein and its sialic acid content. Since 

their methods (Tessier _et a^., I965 and Rose, 1965), for 

estimating %-casein are dependent upon the sialic acid 
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Table 9. The ag-, and p-caseln contents of isoelectric 
casein, ag-casein, and native calcium caseinate 
fractions based on densitometry of transparencies of 
urea-2-mercaptoethanol starch-gel (Amido black 
stained) electrophoretic patterns®-

Relative % of casein components^ 
% Protein Plate 4 B (Fig. l8) Plate 5 B (Fig. 19) 

Fractions^ in sample a^- |3- a^- p- k-

20-hour 1 .5 37.3 36.9 2 5 . 8  32.9 38.3 2 8 .  8 
I.E. whey sol. 0 .5 6 5 . 0  35.0 6 8 . 9  3 1 .  1 
casein 

100-hour W 1  .5 34.9 40.5 24.6 35.9 39.7 24. 4 
100-hour UW 1  .5 32.8 4 5 . 2  2 2 . 0  35.4 3 8 . 8  2 5 .  8 
ttg-casein 
I.E. casein^ 

' 0 .5 91.3 8 . 7  9 0 . 0  10.0 ttg-casein 
I.E. casein^ 0 .75 50.7 34.2 1 5 . 1  49.5 3 4 . 2  1 6 .  3 
I.E. casein^ 1 .5 48.9 33.8 17.3 51.9 33.3 14. 8 
I.E. casein® 1 .0 48.4 31.4 1 7 . 2  
I.E. casein® 2  .0 48.9 34.4 1 6 . 7  

All samples were dispersed in 6.6 M urea-tris-citrate 
buffer except the 20-hour, 100-hour and 100-hour UW caseinate 
fractions in plate 5 B which were dispersed in 6,6 M urea-tris-
citrate-oxalate buffer (pH 8.6), 

All samples contained 0.01 ml of 2-mercaptoethanol/ml 
of solution which was added at least 3 hr before electro-
phoresing. 

^Transparencies correspond to the pictures in Figures l8 
and 19. 

^Single values, densitometer zero set just ahead of the 
a^-casein band. 

°For the method of isolating each fraction see methods 
section (pp. 42-46). 

"^Isoelectric casein preparation 2. 

^Isoelectric casein preparation 1, a Nigrosine stained 
pattern plate 4 C Figure 18. 
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Table 10. A comparison of the distribution of (3-, and 
%-casein in whole casein as reported in the 
literature 

Reference Percent 
ttg-casein ^-casein p-casein 

Waugh and von Hippel 
(1956)% 55 15 30 

Wake (1957)^ 15 

Sullivan _et (1959)° 16 

Payens (1961)^ 51.52 7-13 36-41 

Libbey and Ashworth 
(I96l)e 39 11 43 

Tessier _et a2. (1963)^ 49-60 
(54. )S 

10-23 
(16) 

19-36 
(30) 

Rose (1965)f 50 16 34 

This studyb 
Preparation 1 
Preparation 2 

50 
48.6 

16 
17 

34 
34,4 

^Estimated by moving boundary data of fractionated casein. 

^Estimated on the basis of the nonprotein nitrogen 
released by rennin from whole and %-casein. 

^Estimated from the sialic acid content of skim milk, 
d Estimated by spectrophotometric analysis of casein 

fractions separated by zone electrophoresis (cellulose column) 
with urea buffers. 

^Estimated by paper electrophoresis in urea buffers (7^ 
minor components not included). 

•P 
Estimated by tubidometric analysis of 3- + ̂ -casein, 

%-casein estimated by the sialic acid content. 

) Average of 10 determination on individual cow milks, 

^Estimated by densitometric analysis of transparent 
prints of urea-mercaptoethanol starch-gel electrophoretic 
patterns. 
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content, it is not apparent whether a variation in sialic acid 

has caused the wide ranges (10-23^ a-casein) in their data or 

whether the casein contents actually are varying. Tessier 

et al. (1963) and Rose (1965) examined individual cows milks 

which may account for some of the variation. The data 

(Table 10) of Libbey and Ashworth (1961) are not in agreement 

with the remaining data in the table which no doubt reflects 

the methods they employed. Under their experimental conditions 

(paper electrophoresis using urea buffers) %-caseln migrated 

with ttg-casein at urea concentrations of 0-2.5 M and with 

3-casein at urea concentrations of 6.0-7.0 M. The H-casein 

contents were estimated by subtracting the 3-casein contents 

from the 3- + %-casein contents or the a-casein contents from 

the a-casein (ag- + %-casein) contents of whole casein. 

Since the method, for estimating the a -, 3-, and %-casein S 

contents of casein, used in this study is based on measurements 

on the separated fractions, the problems discussed above do 

not apply. However, an indirect method of measuring the sep­

arated fractions was used. It is reassuring that the values 

obtained for isoelectric casein are in agreement with most 

of the values reported in the literature (Table lO). The 

isoelectric caseins, preparation No. 1 and 2 (Table 9) 

contained relatively more a^-casein and less H-casein than did 

the caseinate fractions (Tables 9 and 11) which may be due 

to the smearing obtained in the K-caseln region (Figures 18 
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Table 11. The k-, and p-casein contents of differentially 
centrifugedj at 55,620 x g and 0 0, native calcium 
caseinate fractions based on densitometry of trans­
parencies of urea-2 mercaptoethanol starch-gel 
electrophoretic patterns^ 

Fractions 
fo Protein 
in sample 

Relative % of casein components 
Amido Black stained Migrosine stained 

P- •K- 0- K-

0-min 1.5 44.2 39.6  16.2 39.3  37 .6  23.1 
10-min 1.5 34.2  42,2 23.6  33 .9  40 .2  25 .9  
20-min 1.5 32.9  4o .6  26 .5  35 .6  37 .6  26 .8  
30-mln 1.5 38.0  42,1 19.9  39 .2  37 .5  23 .3  
40-min 1.5 34.4  39 .6  26 .0  37 .6  34 .4  28 .0  
55-min 1.5 29.0  43 .2  27 .8  31 .4  36 .8  31 .8  
60+10(70)-min 1.5 37.0  41.3 21.7 37.7  36 .2  26,1 
60+10+10(80)-min 0.75  27 .2  40 .9  31 .9  26 .7  38 .9  35 .4  

All samples were dispersed in 6.6 M urea-tris-citrate 
buffer (pH 8.6), and contained 0.01 ml of 2 mercaptoethanol/ml 
of sample which was added at least 3 hr before electro-
phoresing. 

a. Transparencies correspond to the pictures in Figure 17. 

^Single values, densitometer zero set just ahead of the 
ttg-casein band. 

For the method of isolating each fraction see methods 
section (pp. 42-46). 

and 19) of the USG-MCE electrophoretic patterns. This should 

not affect the results shown in Figure 20, since consistency 

in gel electrophoresis and analysis of the densitometer traces 

was maintained. 

The data in Table 11, graphed in Figure 20, show some 

variability in micelle composition as micelle sizes decrease. 
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It is recognized that variability may result from fluctuations 

in the micelle composition or from experimental errors or both. 

The data show (Table 11) that generally the a - and %-casein 

values are slightly higher and the p-casein values slightly 

lower in the Nigrosine stained patterns than in the Amido 

Black stained patterns. However, the values for both stains 

fluctuate in a similar manner (Figure 20) which is reassuring 

in view of the fact that the Nigrosine stained patterns appear 

to have darker backgrounds. The agreement between the two 

stains may reflect the fact that x-casein, employed as a 

standard, was electrophoresed at a concentration approximating 

its concentration in the caseinate fractions (0.21^ based on 

the assumption of ihfo K-casein in the caseinate fractions) 

in order to establish the region occupied by the %-casein 

in the caseinate patterns and the method employed in establish­

ing the baseline was selected in a manner that was considered 

to reduce background errors. It is considered that despite 

the variability in the data (Figure 20) they show a general 

trend toward an increase in %-casein accompanied by a decrease 

in ttg-casein content as micelle size decreases. 

The densitometric data (Table 9) for the isoelectric 

caseins, electrophoresed at protein concentrations of 0.75^ 

and 1.50 (preparation 2) and 1.0# and 2.0$ (preparation 1), 

show that the concentration employed had no adverse affect on 

the relative compositions of these samples. It seems probable 
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that this would hold for the caseinate samples and Implies 

that the relative compositions obtained for the 60+10+10(80)-

mln fraction, electrophoresed at 0.75^ compared with 1.5^ 

protein for the remaining micelle fractions, is valid. 

The electrophoretic mobility of %-casein is changed 

markedly by the method of electrophoresis employed. In moving 

boundary electrophoresis, %-casein migrates with a^-casein as 

a complex designated a-casein. In USG the H-casein migrates 

as a long smear just behind p-casein. This is caused by the 

sieving effect of the starch-gel on the aggregated %-casein 

(Wake and Baldwin, IgSl) and it has been postulated by Neelin 

(1964) that smearing is caused by random disulfide linkages 

resulting in a wide particle size distribution. The addition 

of MCE to the USG and to the sample, breaks these disulfide 

bonds resulting in a more restricted particle size distri­

bution, yielding more descrete banding in the region where 

previously %-casein appeared as a smear. The improved 

resolution of %-caseln upon disruption of these disulfide 

bonds makes it possible to estimate %- as well as a^- and 

g-casein by analysis of USG-MCE patterns. The sum of the 

ttg- and %-casein values in the USG-MCE patterns of the 

micelle fractions (Table 11), comparable to a-casein in 

moving boundary, ranged from 57 to 60^ for Amido Black stained 

patterns and 60 to 66^ for Nigrosine stained patterns while 

the values obtained by moving boundary for a-casein (Table 6) 
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ranged from 74 to 77^ In the descending patterns and 63 to 

70^ In the ascending patterns. It Is apparent that moving 

boundary and USG-MCE (Table 11) can be shown to agree empir­

ically with the moving boundary electrophoresis data (Table 6). 

The fact that no trend was observed in the relative % of 

a- and p-casein with most of the caselnate fractions (except 

the 80-min fraction) in moving boundary electrophoresis, 

suggests that there is no change in the p-casein content as 

micelle size decreases, under the conditions employed to obtain 

and electrophoresis the micelle fractions. Since a-casein 

consists of ttg- and k-casein, the fact that no change appeared 

to occur in the 3-casein content, as the micelle size changed, 

with moving boundary electrophoresis suggests that any change 

in micelle composition must be in the a^- and K-casein, which 

is in agreement with the USG-MCE data. 

Waugh (1958) has postulated that the basic requirement 

for micelle formation is the presence of a^- and K-caseins and 

divalent cations. He suggests that rennln activity (the primary 

reaction being a splitting off of a glycomacropeptide from 

K-casein) is a surface phenomenon, since all of the %-casein 

is not attacked by rennln. If this is true, the increase in 

surface area of the smaller micelles would make it possible 

for more %-casein to be associated with these micelles. The 

addition of g-casein complicates this picture and its role 

has yet to be elucidated. The increased solubility of 
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3"casein at low temperature (Sullivan 1955) has been 

suggested by moving boundary electrophoresis In this study 

(I.E. whey soluble fraction) and by Bohren and Wenner (1961) 

and confirmed by USG and USG-MCE in this study. In addition, 

the preferential depletion of a -casein from the whey-soluble 

fraction has been demonstrated by USG and USG-MCE electro­

phoresis, but was only Implied by Bohren and Wenner (1961). 

Since a constant temperature was employed in the differential 

sedimentation of the micelles, the data (Table 11) suggest 

that an equilibrium was obtained between solubillzed 

(monomeric) and polymeric p-caseins and that this equilibrium 

was not changed during the differential sedimentation of the 

micelles, for the p-casein content of the micelles was shown 

to be essentially constant by both moving boundary and USG-

MCE electrophoresis. 

The USG-MCE data (Tables 9 and 11, Figure 20) are not in 

agreement with the USG data (Table 8) as regards oCg- and p-

casein compositions; no relationship between micelle size and 

ag-caseln compositions was observed with USG. The different 

methods employed in establishing the baseline on the traces of 

USG (Figure 4, p. 68) and USG-MCE (Figure 5,p.69) patterns may 

be the reason that changes in a^-casein contents of the 

caselnate micelle fractions could not be detected on USG. 

In addition, the extensive smearing of %-caseln when MCE is not 

used may trap either a^- or g-caseln or both resulting in 
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variable results that might mask existing trends. Since 

quantitative analysis of USG or USG-MCE casein patterns are 

not reported in the literature, insufficient information 

concerning the possibility of trapping the more mobile protein 

components by the less mobile protein components, i.e., 

%-casein, is available. In this regard, Neelln et al. 

(1962) suggested that the more mobile contaminants (a- or 

p-casein) in several of the K-casein preparations they studied 

may be trapped by %-caseln in non-urea gels. 

The ttg-casein component in the whey-soluble casein 

fraction, which is shown to be equal to about 4.0 percent of 

the p-casein content, when the fraction is electrophoresed on 

USG (Table 8), appears to be absent in the USG-MCE gels 

stained with Amido black (Figures I8 and 19, plates 4B and $3) 

and is barely visible when Nigrosine is used (Figures 18 and 

19, plates 4A and 5A). The a^-caseln component in the whey-

soluble casein fraction when electrophoresed on USG-MCE is 

so faint that it has been ignored in the densitometer analysis 

of the gel pattern (Table 9)• These data suggest a slight 

effect on MCE on the ou-oasein which is illustrated by the 

apparent increase in the 3-casein contaminant in the a -

casein fraction with MCE (about 5^ p-casein without MCE, 

Table 8  vs. 9^ p-casein with MCE, Table 9 ) .  This 3-casein 

contaminant in the a^-casein fraction also exhibits an Increase 

in its relative band position from about band position I3 to 
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band position 12 when MCE is used (Figures 15^ l8 and 21). 

In general, the densitometer data (Table 9) between the 

caseinates dispersed with and without oxalate (Plate 4B, 

Figure l8 and plate 5B, Figure IS, respectively) show some 

variation between dispersing methods. The washed 100-hour 

fraction showed good agreement between methods; the 20-hour 

and unwashed 100-hour fractions do not. This is due, in part, 

to the slightly skewed pattern obtained with the latter 

fractions in plate 5B, Figure 19. 

The increase in %-casein with decreasing micelle size 

(Table 11, Figure 20) observed in this study is in agreement 

with Sullivan et al. (1959), Ribadeau-Dumas and Veaux (1964), 

and Rose (19^5). These workers results were based on the 

sialic acid content as an index of the %-ca8ein concentra­

tions. McGann and Pyne (i960) obtained similar results based 

on the amount of NPN released by rennin in whole milk and 

"small particle" milk. Rose (1965), whose data are the only 

ones published to date which present a^-, g-, and %-casein 

contents of various micellar fractions, reported an increase in 

%-casein and a decrease in p-casein with decreasing micelle 

size. This trend is not in agreement with the data obtained 

in this study; a decrease in a^-casein was found to accompany 

an increase in K-casein in this study. It is not clear why 

the discrepancy between the data in Table 11 (Figure 20) and 

those of Rose exists. The paper by Rose (1965) is a review 
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and the author did not explain in detail the conditions he 

used. A portion of his fractions were obtained at tempera­

tures other than refrigerated temperature and his last sedi-

raented fraction was obtained at refrigerated temperature. 

This change in temperature during fractionation of the 

caseinate micelles undoubtedly affected the composition of 

Rose's last sedimented fraction as well as his non-sedimented 

casein fraction, since p-casein is considered to be more 

soluble at low temperature than at room temperature (Sullivan 

_et 1955). As regards the turbidimetric method employed 

by Rose (1965), it is possible that the results obtained with 

native caseinates may not fit a standard curve which has been 

established with acid casein, isolated p-_, and %-casein 

fractions, and mixtures of these fractions approximating whole 

casein. If this is true, the data of Rose (1965) for the a^-

casein compositions of fractionate micelles may be incorrect, 

since a^-casein is estimated by difference (lOO- (3- + 

%-casein)). Rose also reports that a visual observation of 

his USG-MCE patterns (not included in the publication) show 

a decrease in p-casein content with decreasing micelle size, 

but only a slight increase in %-casein intensities was observed. 

Unfortunately Rose (1965) does not indicate his method of 

dispersing the caseinate for USG-MCE electrophoresis. 
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Polyacryalimlde Disc Electrophoresis 

As with the urea starch gel (USG) patterns, empirical 

results were obtained by simply viewing the gels. These 

results are considered under the appropriate headings. 

Recoveries of as-casein in mixtures of as- and %-casein 

Since %-oasein does not migrate in 7§- percent polyacryla-

mide gels (PAG) in the concentrations used, it seemed desir­

able to determine whether the %-casein trapped in the sample 

gel held back part of the a^-components. The data are 

summarized in Table 12. 

Table 12. Amounts of a -casein that migrate in mixtures of 
as- and %-casein using disc electrophoresis with 
and without urea 

Concentration [ig Protein/tube Percent as Recovered^'^ 
a^-casein %-casein a„:% without urea with urea 

50 0 .00 . -  100.0  100.0  
50 6 .25 4  104.0  95.0  
50 12.50 2  90.8  93.3  
50 25.00 1  80.0  75.3  
50 50.00 0 .5  45.0  54.8  

Average of two tubes (gels)(See Figure 21). 
b The percentages of a -casein are based on the amount that 

migrated in the absence of %-casein as 100%. 

The percentage of a^-casein that migrated during electro­

phoresis decreased markedly as the %-casein content of the 

mixture increased. It should be noted that the total protein 

concentrations placed on the gels were not constant, so that 

part of the reduction in the amount of a^-casein that migrates 
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probably results from this variation in total concentration. 

It must also be pointed out that the relative areas of 

individual peaks of samples electrophoresed in duplicate are 

quite variable. The above considerations not withstanding, a 

definite reduction in a^-casein with increasing %-casein 

concentration in the mixture is apparent (Figure 21). This 

decrease may result from the formation of a complex between 

ttg- and %-casein or because K-casein closes the pores of the 

gel before all the a^-casein has entered the spacer gel. In 

the case of the latter, g-casein should also have been affected 

and reproducible trapping of the various components should not 

have been obtained. The possibility that %-casein complexes 

with g-casein has been suggested by Swaisgood and Brunner 

(1962). Further evidence that would support either of the 

above hypothesis was not obtained in this study. 

From USG-MCE data (Table 11), it would appear that all 

the micelle fractions have a^-casein: %-casein ratios greater 

than 1 except the 60+10+10(80)-min fraction. If this rela­

tionship holds for disc electrophoresis, and the data of 

Table 12 are applicable to caseinate samples, the sum of the 

percentages of a^- and p-casein that migrate should exceed 

8O; the a -casein: p-caseln ratio may or may not be affected. 

Comparison of methods of dispersing native calcium caseinate 

(20-hour fraction) without urea 

Three methods, oxalate, EDTA, and citric acid were used 
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to disperse the 20-hour fraction as previously described, 

and the results summarized in Table 13. 

Table 13. Methods of dispersing calcium caseinates (20-hour 
fraction) without urea 

Method of®- Percent of Ratio 
dispersing ttg-casein p-casein 

Sodium Oxalate 47.60 52.40 0 .910 
EDTA^b 47.00 53.00 0 .887 
Citric Acid 47.70 52.30 0 .913 

^'Sample concentration 100 (ig protein/tube (gel), in 
duplicate. 

^Disodium ethylenediaminetetraacetate. 

The data by the three methods of dispersion are in good 

agreement. On the basis of sharper banding, citric acid was 

used as the dispersing agent for the "native" calcium caselnate 

in all subsequent disc electrophoresis without urea. 

Comparison of methods of dispersing native calcium caselnate 

(20-hour fraction) in the presence of urea 

Two methods, urea and urea-oxalate, were used to disperse 

the 20-hour fraction as previously described. Three variations 

in electrophoretic technique were also compared and the 

results summarized in Table l4. 

The data in Table l4 show that the method of dispersing 

the caselnate had little affect on the respective quantities 

or ratios of a^- and p-caseins. Some variation is observed 
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Table l4. Comparison of methods of dispersing the "native" 
calcium caseinates®- (20-hour fraction) in the 
presence of urea 

Urea concentrations in Gels Percent of a^- and p-casein 
urea dispersed urea-oxalate 

Spacer Gel Lower Gel dispersed 
ttg 3 ttg : 3 ttg g ttg : 3 

5.0 M urea 5.0 M urea 45.20 54.80 0,825 45.90 54.10 0.848 
5.0  M i&raa 6^ M 46.8? 53.13 0 .882 46.45 53.55 0 .867 
6 . 6  M i z r e i  6 ^  4 5 . 7 0  5 4 . 3 0  0 . 8 4 2  4 5 . 3 0  5 4 . 7 0  0 . 8 2 8  

^Sample concentration, 100 lig protein/tube (gel). 

^All sample gels were 6.6 M urea. 

among the urea concentrations in the gel; these do not appear 

to be excessive. All subsequent disc electrophoreses of 

caseinates were conducted using 5.O M urea in the spacer and 

lower gels and 6.6 M urea in the sample gels. 

Disc electrophoretic patterns without urea 

The banding in the non-urea patterns of the caseinates 

(Figure 22) was almost identical to the banding obtained with 

i s o e l e c t r i c  w h o l e  c a s e i n  d i a g r a m m e d  i n  F i g u r e  6  ( p .  7 6 ) .  

The bands between the major a„- and 3-casein bands (6 and 7)  

were present in most of the micelle fractions, but were quite 

low in intensity and do not show in the photographs. The 

number 8 band was well defined in all patterns. Bands 6, 7 

and 8, were well defined in the 100-hour washed caseinate 

sample. In general, the a -casein band was quite sharp, 

compared with the slightly less intense, but broader 3-casein 
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Figure 22. Non-urea polyacrylamide disc electrophoretlc 
patterns of isoelectric casein, o^-casein, 
%-ca8eln and native calcium caseinate fractions 

Electrophoretic conditions: 
Current, 5 mA per gel for approximately 50 
minutes, stained with Amido Black for at least 
1 hr and destained with a current of 10 mA per 
gel. All samples dispersed in sample gel 
solutions containing tris-citrate buffer 
( p H  6 . 9 ) .  

Samples^ (gel No. and )ag of protein per gel): 

Plate 6 A l) Isoelectric casein preparation 1, 
100 jdg; 2) Œg-casein, 50 (ig; 3) isoelectric 
whey-soluble casein, 100 p.gj 4) %-caseln, 100 (ig; 
5) %-casein, 200 |jg; 6) 20-hour fraction, 100 |ag; 
7) 100-hour W fraction, 100 |ug; 8) 100-hour UW 
fraction, 100 |jg. 

Plate 6 B 1) 0-min fraction, 100 |ag; 2) 10-min 
fraction, 100 )j.g; 3) 20-min fraction, 100 [ag; 
4) 30-min fraction, 100 |ag; 5) 40-min fraction, 
100 lagj 6) 55-min fraction, 100 (ig; 7) 60+10 
(70)-min fraction, 100 [ig; 8) 60+10+10(80)-min 
fraction, 100 [ig. 

^For the method of isolating each fraction see methods 
section (pp. 42-46). 
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band which had a concave trailing edge. The whey-soluble 

casein fraction, precipitated at pH 4,6 from the super­

natant of skim milk centrlfuged for 20 hours at 53,620 x g and 

0 C, Figure 22, showed essentially no a^-casein component 

(less ttg-casein than was obtained with USG), in agreement with 

the USG data (Table 8). Smearing, noted to a much lesser 

extent on the caseinate fractions, was noted behind the 

g-casein band in the whey-soluble casein fraction; it probably 

is due to casein components other than p-casein. 

The densitometer data. Table 15, show a somewhat random 

variation in a - and p-casein contents of the micelle fractions, 

regardless of the method used for analyzing the tracings. No 

definite trend is shown. The 60+10+10(80)-min fraction 

(smallest sedimented micelle) shows a high a -casein content 

which agrees with the data of Rose (1965) but is contradictory 

to the data in Tables 8, 9 and 11 for USG and USG-MCE. Since 

the other fractions do not exhibit a trend, the meaning of 

the 80-min sample values it is not clear. The 80-mln fraction 

showed an atypical moving boundary electrophoretic pattern 

(Figure 12, p. 102)compared with all the other caseinate 

fractions. A broad peak between the a-casein and g-casein 

peaks, with an intermediate mobility of approximately 

-4.7 X 10~^ cm^ volts"^ sec~^, was observed. The percentages 

of a-casein, X-casein and 3-casein, in the descending moving 

boundary electrophoretic patterns were approximately 55-0, 
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Table 15. The a^- and g-caseln contents of Isoelectric casein 
and native calcium caselnate based on densitometry 
of non-urea disc electrophoretic patterns (a-- plus 
p-casein = 100^) 

Fractions a 
lag protein 
per gel a. 

Relative % of casein components 
ave ave 

P- P- oCg- p-

0-min 100 46.9  45.2  53.1 54.8  
10-min 100 46.6  48.2  53.4  51 .8  
20-min 100 48.3  48.0  51.7  52 .0  
30-min 100 44.7  43.9  55.3  56 .1  
40-min 100 48.9  49.2  51.1 50.8  
55-min 100 47.9  56 .6  52 .1  53.4  
60+10(70)-min 100 47.5 56.2  52.5  53.8  
60+10+10 
(80)-min 

48.6  20-hour 50 48.6  
47.3  

51.4 
20-hour 100 47.5  47.3  52 .5  52 .7  
I.E. whey sol. 100 0.4 0.4 99.6  99.6  
casein 

100-hour W 100 51.8  51.4  48.2  48.6  
100-hour U¥ 100 51.8  50.9  48.2  49 .1  
I.E. casein^ 250 47.7  47.8  52.3  52 .2  
I.E. casein^ 200 46.0  54.0  
I.E. casein^ 100 46.7 53.3  

46.10 
47.40 
48.15 
44.30 
49.05 
47.25 
46.85 

47.40 
0.40 

51.60 
51.35 
47.75 

53.90 
52.60 
51.85 
55.70 
50.95 
52.75 
53.15 

52.60  
99.60 

48.40 
48.65 
52.25  

All samples were dispersed in sample gel solutions 
c o n t a i n i n g  a  t r i s - c i t r a t e  b u f f e r  ( p H  6 . 9 ) .  

a-c For the method of isolating each fraction see methods 
section (pp. 42-46). 

b Isoelectric casein preparation 1 

25.0  and 20.0, respectively. It was also noted that the band 

intensities of this fraction, in PAG, were not as great as 

in all the other caselnate fractions despite the fact that the 

same protein concentrations were used. The band intensities 
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for this fraction (Figure 22) were roughly ̂  of those for 

the other caselnate fractions. The low p-casein content, 

obtained with moving boundary electrophoresis, may indicate a 

p-casein-K-caseln interaction as suggested by Swaisgood and 

Brunner (1962), because the whey-soluble fraction has been 

shown, in this study and by others, to contain a high %-

casein concentration (Table 9) (Rose, 1965 and Sullivan et al., 

1959). The decreased intensities in PAG, for the 80-min 

fraction, stronly suggests that components other than %-

casein did not migrate. Such a retardation of fractions may 

invalidate the analytical results of all gel electrophoreses 

of casein, including urea as well as non urea gels unless MCE 

is used, because %-caseln may hold back other components when 

it does not migrate. 

Disc electrophoretic patterns in the presence of urea 

In general, the bands in the urea PAG native calcium 

caselnate patterns. Figure 23 were sharper, especially that of 

p-casein, than in the non-urea PAG patterns. The distance 

between the a^-casein band No. 6, Figure 23, and p-casein 

bands No. 9 and 10, Figure 23 in the urea PAG was less than in 

the non-urea PAG patterns (Figure 22), due in part, to the 

fact that both sets of bands migrated closer to the tracking 

dye or front in non-urea PAG. They thus migrated further into 

the lower gels. The minor bands (Figures 22 and 23) between 

ttg-casein and p-casein corresponding to bands 7 and 8 
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Figure 23. Urea polyacrylamlde disc electrophoretlc patterns 
of Isoelectric casein, a -casein, %-caseln, and 
native calcium caselnate fractions 

Electrophoretlc conditions: 
Current, 5 mA per gel for approximately 50 
minutes, stained with Amldo Black for at least 
1 hr and destalned with a^current of 10 mA per 
gel. All samples dispersed In sample gel 
solutions containing 0.6 M urea-trls-cltrate 
buffer (pH 6.9). 

Samples^ (gel No. and |ag protein per gel): 

Plate 7 A 1) Isoelectric casein preparation 1, 
500 ij,g; 2) ttg-caseln, 50 |ag; 3) Isoelectric 
whey soluble casein, 100 (ag; 4) %-caseln, 50 |ig; 
5) H-caseln, 200 ng; 6) 20-hour fraction, 100 
(igj 7) 100-hour W fraction, 100 (ag; 8) 100-hour 
UW fraction, 100 |ag. 

Plate 7 B l) O-mln fraction, 100 |ag; 2) 10-
mln fraction, 100 [igj 3) 20-mln fraction, 
100 lag; 4) 30-mln fraction, 100 |jg; 5) 40-mln 
fraction, 100 jjg; 6) 55-mln fraction, 100 |ag; 
7) 60+10 70)-mln fraction, 100 |jg; 8) 6O+IO+IO 
(80)-mln fraction, 50 |ag. 

^Por the method of Isolating each fraction see methods 
section (pp. 42-46). 
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(Figure 6J p. 76) with urea-containing gels, were absent in 

the native calcium caselnate PAG patterns, due in part to the 

much lower sample concentrations (100 |ag protein for caselnate 

vs. 500 lag protein for isoelectric casein). Higher protein 

concentrations of caseinates resulted in more diffuse bands 

in PAG. Bands are visible between the g-casein bands and the 

spacer gels; these correspond to bands 13 through 17 in 

Figure 6 (Pattern 2). These bands were not considered in the 

densitometric analysis of the urea-PAG patterns. The 3-

casein components (Figures 22 and 23) appear in most cases, 

as two bands, corresponding to bands 10 and 11 in Figure 6. 

The urea PAG pattern of the isoelectric whey-soluble fraction 

(Figure 23, gel No. 3) was similar to the non-urea PAG and 

the USG patterns. A barely discernible a^-casein band 

(negligible in the densitometer trace) is obtained. Discrete 

bands also occur behind the p-casein components (Figure 23, 

g e l  N o .  3 ) .  

The densitometer data. Table I6, show almost constant 

ttg-caseln and g-caseln contents in the micelle fractions, with 

the exception of the 80-min fraction in agreement with the 

USG data. Table 8. The relative proportion of a^-casein in 

the 80-min fraction containing urea was slightly less (56.7 

vs. 60.2 percent) than for the non-urea PAG (Tables 15 and 

16). The total area under the densitometer trace of the 

20-hour fraction, which had a protein concentration of 
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Table l6. The a^- and g-casein contents of isoelectric 
casein and native calcium caseinate fractions 
based on densitometry of urea disc electrophoretic 
patterns (a^- plus p-casein = 100^) 

Relative % of casein components 
lag protein ave ave 

Fractions per gel a - a - p- p- a - 8-

0-min 100 43.7  42.3  53.6  47.7  43 .00  57.00 
10-min 100 42.3  42.3  56.3  57.7  42.55 57.45 
20-min 100 45.2 56.2  57.7  57.2  45.75 54.25 
30-min • 100 44.7 42.9  54.8 53.8  43 .80  56 .20  
40-min 100 43.4  44.1 56.3  57.1 43.75 56.25  
55-min 100 44.9 42.7  56 .6  55.9  43 .80  56 .20  
60+10(70)-min 100 42.4 44.9 55.1 57.3  56 .70  43.30 
60+10+10 50 57.7  55.7  42.3  44.3  

(8o)-min 
47.6  

55.7  

20-hour 50 47.6  52.3  
20-hour 100 46.7  45.5  53.8  54.5  56 .1- 53.90 
I.E. whey sol. 100 0 .0  0 .0  100.0  100.0 0.00  100.00 
casein 

44.0 100-hour W 100 44.0 42.0 56.0  58 .0  43 .00  57 .00  
100-hour UW 100 44.2 43.0  55.8  57 .0  43 .60  56 .40  
I.E. casein^ 500 48.9  48.7  51.2 51.3  48.80 51 .20  

All samples were dispersed in sample gel solutions 
containing a 6.6 M urea-tris-citrate buffer, pH 6.9. 

^For the method of isolating each fraction see methods 
section (pp. 42-46). 

^Isoelectric casein preparation 1. 

50 pg/tube, was approximately of the total area obtained 

when 100 |ag of protein/tube was used. However, in the 80-min 

fraction (50 jag protein/tube) the total area under the trace 

was approximately 3/4 of the total area obtained for the 

20-hour fraction at the same concentration. This decrease 

in total area is more than would be expected upon considering 
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the difference in K-casein contents (Table 9)• 

The discussion concerning the a^-casein: %-casein ratio 

of the 80-min fraction would seem to be similar to the 

discussion under the preceding (non-urea) section. 

Disc electrophoretic patterns in the presence of urea and 

mercaptoethanol 

As previously stated, PAG urea-MCE patterns were of 

little value due to the irregular and non-uniform appearance 

of the major a^-casein and in some cases the major p-casein 

bands. A typical pattern, 20-hour fraction, obtained for 

caseinates is shown in Figure 24 (gel No. 2). The irregularity 

in the a^-casein band is not apparent in the photograph. 

In general, the overall band intensities of the major 

3-casein bands was greater than the intensities obtained in 

non-urea and urea PAG patterns for the same protein concentra­

tions, implying that components other than %-casein may not 

migrate when MCE is not used. Unfortunately, because the 

sample gel did not polymerize, it was impossible to determine 

whether or not protein remained in the sample gel. 
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Figure 24. Urea 2 mercaptoethanol polyacrylamlde disc 
electrophoretlc patterns of K-caseln and a 
typical native calcium caselnate fraction 

Electrophoretlc conditions: 
Current 5 mA per gel for approximately 50 
minutes, stained with Amldo Black for at least 
1 hr and destalned with 10 mA per gel. Samples 
were dispersed in a sample gel solution 
containing a 6.6 M urea-tris-citrate buffer 
(pH 6.9) and 0.01 ml of 2 mercaptoethanol 
added per ml of sample gel solution at least 
3 hr before electrophoreslng (Woychik, 1964), 

Samples^ (gel No. and |ag protein per gel): 

l) K-caseln, 100 |ag; 2) 20-hour fraction, 
100 pg. 

^For the method of isolating each fraction see methods 
section (pp. 42-46). 
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SUMMARY AND CONCLUSIONS 

Investigations were carried out on the calcium caseinate-

phosphate complex in raw skim milk. The protein portion of the 

complex (caselnate) was studied using conditions designed to 

maintain the protein as close to its native state as was 

feasible. 

Raw skim milk was subjected to differential ultracentri-

fugation in a Model L Spinco ultracentrifuge (No. 21 rotor) 

at 20,000 rev/mln (maximum g force of 53^620") and 0 C. Six 

native calcium caselnate fractions of decreasing micelle size, 

0-, 10-, 20-, 30-, 40-, 55-mln fractions, were sedimented in 

10-min centrifuging increments (15 min for the last fraction) 

using the supernatants from the preceding increment. Two 

additional fractions were obtained, using 10-min increments, 

after an initial centrifugation of 60 min (60+10,70-min and 

60+10+10,80-min fractions). A composite of the sedimented 

fractions above was obtained, containing 86.1^ of the total 

caselnate, by centrifuging the same skim milk for 20 hours 

using the same conditions. The caselnate (13.9^) remaining 

in the supernatant was recovered by isoelectric precipitation 

at pH 4.6 resulting in a non-sedimented fraction designated as 

isoelectric whey-soluble casein. All of the sedimented 

native calcium caseinates were mechanically dispersed in 

redistilled water and were sedimented, using the initial 

conditions, for 12 hours (the 20-hour fraction was sedimented 
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for 20 hours). The fractions were again dispersed, freeze-

dried and stored over PgO^ at room temperature in a vacuum 

dessicator. 

The supernatants resulting from the fractionation above 

were analyzed (Table l) for total nitrogen (TN) and total 

solids (TS); a smooth TN depletion curve (Figure 9) was 

obtained. The data show that more caseinate could be sedi-

mented in 30 min using the differential technique than could 

be sedimented during 60 min of continuous centrifugation because 

of the decreasing calcium caseinate concentrations in the 

serially depleted supernatants. From these data, the casein 

nitrogen distribution of the sedimented and non-sedimented 

fractions was determined (Figure 10). Seven sequential 

caseinate fractions were obtained; these did not include the 

60+10(70)-min fraction and the non-micellar (whey-soluble) 

fraction. The 60+10(70)-min fraction was found to represent 

a composite of the 30-, 40-, and 55-min fractions. 

The analysis of the sediments (Table 2) show decreasing 

total phosphorus (TP) and calcium contents with decreasing 

micelle size accompanied by an increase in TN, in agreement 

with de Kadt and van Minnen (194-3), Hostettler aJ. (19^9) 

and Ford _et aJ., (1955). The TP:TN, Ca:TN, and TP:Ca weight 

ratios decreased with decreasing micelle size. The molar • 

Ca:Mg ratios were lower than those reported by Alexander and 

Ford (1957). The isoelectric whey-soluble casein showed a 
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casein N(CN): organic phosphorus (OP) ratio of 0.0438, in 

agreement with Bohren and Wenner (1961) and Yamauchi and Tsugo 

(1962) for similar fractions. This reflects the increased 

solubility of p- and y-casein at low temperature. 

An attempt was made to remove essentially all of the 

native calcium caseinate from skim milk by low-temperature 

ultracentrifugation of skim milk in a Model L Splnco ultra-

centrifuge (No. 40 rotor) at 40,000 rev/min (maximum g force 

144,700) for 100 hours and 0 0. A portion of the sediment 

was dispersed in redistilled water, as above, and freeze-

dried as an unwashed control (lOO-hour IJW fraction). The 

remaining sediment was washed and freeze-dried, as above, 

using the centrifuging conditions employed with the skim milk, 

for sedimenting the redispersed caseinates (lOO-hour W fractior^. 

The total solids and nitrogen (TN, ON, non-casein nitrogen, 

and non-protein nitrogen) values were determined for the 

original skim milk, the supernatant, and wash water (Table 3). 

The results show that only 95.8^ of the total caseinates were 

sedimented in 100 hours. Whey proteins, which are adsorbed 

to the caseinate, are sedimented and could not be completely 

removed by the washing procedure employed although the non­

protein nitrogen was completely removed. A small amount of 

the caseinate was lost in the wash water with the result that 

the washed (100-hour W fraction) caseinate contained 930 of 

the total caseinate. Approximately 7.5^ of the protein in the 
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washed caseinate was calculated (from analyses of the super­

natant and wash water (Table 4) to be serum or non-casein 

protein. Analyses (Table 4) of the 100-hour ¥ and UW sediments 

show that the washed fraction contained slightly higher 

values for TN^ TP, Ca, and Mg than the unwashed fraction, 

in agreement with Ford _et aj.. (1955). 

All native calcium caseinates and the isoelectric whey-

soluble casein. Isolated during this investigation, were 

subjected to moving boundary electrophoresis. A number of 

methods (buffers) for dispersing the caseinates were compared: 

veronal buffer in which the pH was adjusted to 8.3 (23 C) 

with E.D.T.A. (r/2 = O.l); veronal-oxalate buffer with enough 

sodium oxalate just to react with the Ca and Mg in a given 

fraction and sufficient NaCl to give a resistance comparable 

to a standard veronal buffer (r/2 = 0.1084);"ireronal-excess 

oxalate buffer (no NaCl) with enough sodium oxalate to give 

a resistance comparable to a standard veronal buffer (r/2 = 

0.1802). These buffers were employed with the 20-hour fraction 

and the results (Table 5) compared with isoelectric casein. 

Mobilities and relative percentages of a- and g-casein were 

determined after 1 and 1.5 hr electrophoresis time. The data 

(Table 5) show that there was reasonable agreement among the 

data obtained using the several conditions described. The 

veronal-oxalate buffer (r/2 = 0.1084) yielded mobilities and 

relative areas that were in closer agreement at the two 
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electrophoreslng times employed than did the other methods and 

was used in the remaining moving boundary analyses of the 

caseinate fractions. 

The moving boundary electrophoretic data (Table 6, 

Figure 12) of the caseinate fractions show no difference 

among the relative percentages of a- and p-casein (approxi­

mately 75^ and 25^ respectively, descending patterns) for the 

0-, 10-, 20-, 30-, 40-, 55-, and 60+10(70)-min fractions 

in agreement with Hostettler _et a2. (194-9) and Heckman _et al. 

(1958). However, the smallest micelles sedimented (6O+IO+IO, 

80-min fraction) exhibit an atypical electrophoretic pattern 

(Figure 12, II). A peak between the a- and g-casein peaks 

(designated as X-casein) with a mobility of approximately 

-4,7 X 10"^ cm^ volt"^ sec~^, which is in agreement with the 

mobility of g-lactoglobulin reported by Tobias _et aJ. ( 1952b), 

was observed. However, the magnitude of the peak (22-27$) 

suggests that the X-casein peak cannot all be g-lactoglobulin. 

The non-sedimented whey-soluble casein fraction also exhibits 

an atypical electrophoretic pattern (Figure 12, III). The 

first peak has a mobility comparable to the X-casein component 

above. Hansen _et aJ. (1962), in a study of non-micellar 

(whey-soluble) casein report a similar X-casein component 

having a mobility of -4.73 x 10 ̂  cm^ volt ^ sec ^. The 

p-casein peak shows an increase in relative area (approxi­

mately 50$ of the pattern, compared with 25$ in a typical 
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caselnate pattern) In agreement with Bohren and Wenner 

(1961) and Hansen ̂  aJ.. (1962). A y-casein peak was also 

observed in the descending pattern which was not observed in 

any of the other fractions (y-casein peaks were observed in 

all ascending patterns). The data suggest that the X-casein 

component in the whey-soluble casein and the 60+10+10(80)-rain 

fraction may be the same. If this is true, it suggests that 

only a small portion of the X-casein component can be p-

lactoglobulin, because the whey soluble fraction is an iso­

electric preparation. Urea-2-mercaptoethanol starch-gel 

electrophoresis of the whey-soluble casein fraction has shown, 

in this study, that it is almost devoid of a -casein and 

contains high amounts of 3- and %-caseln. It is concluded 

that the X-casein component is %-caseln which exhibits a low 

electrophoretic mobility because of a x-casein: 3-casein inter­

action. 

The 20-hour fraction was electrophoresed (moving boundary) 

in the presence of 5 M urea. The patterns (Figure 13) show 

the disaggregating effect of the urea on the casein. Thirteen 

peaks were observed in the descending pattern. No further 

experiments using urea in moving boundary were attempted. 

Moving boundary electrophoresis of the 100-hour ¥ and 

100-hour UW fractions (Table "J, Figure l4) show that a 

Y-casein peak is observed in the descending pattern in the 

100-hour W fraction, but not in the 100-hour IM fraction , 
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suggesting that washing has removed some NCN constituents that 

may mask the y-oaseln In the unwashed fraction. The washed 

fraction was also electrophoresed in veronal-exce.ss oxalate 

buffer (r/2 = 0.1802) and the descending pattern (Figure l4, 

II) shows a small peak between the a- and g-casein peaks. 

The mobility of this peak is slightly lower than the mobility 

of the X-casein peak observed In the 60+10+10(80)-min and 

whey-soluble casein fractions. No further data concerning 

this peak was obtained in this study, but it is concluded 

that if this peak is a protein component, it exists in the 

micelle range between 86.1^ (amount of the total caseinate in 

the 20-hour fraction) and 93.5^ (amount of the total caseinate 

in the 100-hour W fraction). 

All caseinate and the whey soluble casein fractions as 

well as ttg-caseln, %-casein, and isoelectric caseins were 

subjected to urea and urea-mercaptoethanol horizontal starch-

gel (USG and USG-MCE) electrophoresis at 2-3 C. The relative 

percent of the casein components were determined by densito­

metry of transparent pictures of gel patterns stained with 

Amido Black and Nlgrosine. Seventeen bands were obtained 

for isoelectric casein USG patterns (Figure 15). The 

caselnates, however, exhibit more smearing and fewer bands, 

than the isoelectric casein preparations (Figures 15 and l6). 

This suggests that some of the bands observed in the iso­

electric casein patterns are artifacts resulting from the 
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method of preparation. The 100-hour W caselnate fraction 

exhibited banding In the region where %-caseln migrates as 

a smear (Figure 15) Indicating that these bands are present 

In the micelle size between 86.1 and 93.5^ of the total 

caselnate. The 100-hour U¥ caselnate fraction did not show 

these bands. USG electrophoresis of the whey-soluble casein 

fraction confirms the suggestion obtained by moving boundary 

electrophoresis in this study and implied by Bohren and 

Wenner (1961), that this fraction Is deficient in ttg-casein, 

since only 4^ a^-casein was observed in the pattern (Table 8). 

In contrast with moving boundary electrophoresis, %-caseln 

migrates as a smear behind the 3-casein, rather than in 

combination with a^-caseln as a-caseln, in USG electrophoresis. 

The densitometer data (Table 8), in which the relative 

percentages of oCg- and g-caseln in the calcium caselnate 

micelle fractions were determined, show a somewhat random 

variation in composition and no trend could be detected with 

decreasing micelle size. 

In the USG-MCE patterns, 20 bands were obtained with an 

Isoelectric casein preparation and K-casein formed descrete 

bands (about 4 bands) just behind the p-casein bands (Figures 

18 and 19). The caseinates exhibit more discreet banding 

when MCE was employed, but some smearing was evident in the ' 

%-casein region (Figures I7, I8, and 19). The relative 

percentages of a-, g-, and %-casein (30, 34, and l6^ 
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respectively) obtained for isoelectric casein (Table 9) 

are in good agreement with values reported in the literature 

(Table lO) which were obtained by other types of experimental 

methods. Higher ̂ -casein and lower a^-casein values were 

obtained for caseinate samples (Tables 9 and 11) than for the 

isoelectric preparations. The densitometer data (Table 11) 

obtained with the calcium caseinate fractions show some 

variability in component quantities with changing micelle 

sizes, but in general they show a trend toward an increase 

in %-oaseln and a decrease in a -casein as the micelle sizes 

decrease (Figure 20). The a - and %-casein values were 

slightly higher and the g-casein values slightly lower in the 

Nigroslne stained patterns than in the Amido Black stained 

patterns. However, the relative quantities of the components 

of the caseinate fractions appear to fluctuate in the same 

directions with both staining procedure (Figure 20). These 

results confirm the results obtained by moving boundary 

(Table 6). Since o.-aa,Rp„in consists of a - and %-caseln, the 

fact that no change appeared to occur in the g-caseln content, 

as micelle size changed, with moving boundary suggested that 

any change in micelle composition must be in the a.- and 3-

caseln. The USG-MCE densitometry data (Table 9) for the 

whey-soluble casein fraction show a negligible amount of 

a -, 65-68.9^ 3-, and 31.1-350 K-oaseln. This is in agreement 

with the contention that p-caseln is more soluble at low than 
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at high (room) temperature. In addition, the preferential 

depletion of a^-casein from skim milk by ultracentrifugation, 

which has been demonstrated in this study, was only implied 

by Bohren and Wenner (1961). Since a constant temperature 

was employed in the fractionation of the micelles in this 

study, the data (Table 11) suggests that an equilibrium was 

obtained between solubilized (monomeric) and polymerized 

p-caseins and that this equilibrium was not changed during 

the sedimentation of the micelles, for the g-casein content of 

the micelles was shown to be essentially constant by both 

moving boundary and USG-MCE electrophoreses. The fact that 

trends in micelle composition with decreasing micelle size 

was not shown by USG electrophoresis (Table 8) suggests that 

H-casein, which migrates as a smear without MCE, may trap 

either a - or g-casein or both resulting in variable results 

that might mask existing trends. 

The fractions isolated in this study were also subjected 

to disc electrophoresis (gels in glass tubes electrophoresed 

in a vertical position) in non-urea and urea polyacryalimide 

gels (PAG) at room temperature. Preliminary experiments 

indicated that a-casein did not migrate in either non-urea 

or urea PAG. Comparison of various mixtures of a^- and 

K-casein (Table 12) indicate that when the a^-: ^-casein 

ratio is less than 1, a sharp drop in the amount of a^-

casein that migrates occurred, suggesting that either an 
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mlgratlng x-casein blocked the pores of the gel before all the 

a -casein had migrated. Comparison of methods of dispersing 

calcium caselnate (sodium oxalate, E.D.T.A., and citric acid) 

for disc electrophoresis In non-urea PAG (Table 13) show that 

the three methods are in good agreement. On the basis of 

sharper banding, citric acid was used as the dispersing agent 

in non-urea disc electrophoresis. In urea PAG disc electro­

phoresis, a number of variations in urea gel concentrations 

were compared (Table l4) and good agreement among urea gel 

concentrations was obtained. All subsequent gel electro­

phoreses of caseinates were conducted using 5.0 M urea in the 

spacer and lower gels and 6.6 M urea in the sample gels. 

Ten bands were obtained with isoelectric casein in non-

urea PAG disc patterns (Figure 22). The caseinates showed 

similar patterns (6 bands) with some of the minor bands being 

absent. The urea PAG disc patterns (Figure 23) of Isoelectric 

casein showed I7 bands. The caseinates showed only 7 bands 

which was caused, in part, by the difference in protein con­

centrations employed (500 |ag protein per gel for the Isoelectric 

casein compared with 100 [ig protein per gell for the casei­

nates). The whey-soluble casein fraction in the urea and non-

urea PAG disc patterns contained essentially no a^-casein and 

almost discreet banding behind the p-casein band in agreement 

with the USG and USG-MGE patterns (Figures 15, 17, and I8). 
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The relative percentages of a.g- and 3-caseln (obtained by 

direct densitometry of the gels) of the non-urea (Table 15) 

and urea (Table I6) PAG disc electrophoretic patterns are in 

general agreement with the results obtained with the USG 

patterns in that no trend in micelle composition was obtained 

with decreasing micelle size. One exception was noted. The 

60+10+10(80)-mln fraction showed a definite increase in 

a„-casein composition. Since this fraction was shown to 

contain the highest ^-casein concentration of any of the 

sedlmented micelles by USG-MCE_, exhibited an atypical moving 

boundary electrophoretic pattern, and decreased band inten­

sities in comparison with the other caseinate fractions in PAG, 

it is concluded that wholly or in part, some components other 

than ^-casein may not have migrated. Such a retardation of 

fractions may invalidate the analytical results of all gel 

electrophoresis of caseins unless USG-MGE electrophoresis is 

used because %-caGeln may hold back the other components. 

Disc electrophoresis employing urea and MCE was attempted 

in this study. However, it was found that MCE inhibits the 

photopolymerizatlon of the upper gels and caused distortion 

of the ttg-casein bands and to a lesser extent the p-casein 

bands making the patterns unsuitable for densitometry. The 

%-caseln bands were apparently unaffected and 12 bands were 

obtained for the %-caseln preparation employed in this study 

(Figure 24). 
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APPENDIX 

Table 17. The effect of the densitometer zero position on the 
a - and g-caseln content of isoelectric casein, 
a -casein and native calcium caseinate fractions 
based on densitometry of transparencies of urea 
starch gel electrophoretic patterns®- (a - plus 
3-casein = 100$) 

Relative $ of casein components 
, % protein Amido Black stained Nigrosine stained 

Fractions in sample a - p- a - g-

0 min 1.5 45.0* "45.od55.oC55.od45.9' '47.0^54.l°53.0d 
10-min 1.5 45.4  45.4 54.6 54.6 44.5 45.6  55.9 54.4 
20-min 1.5 47.9 47.4 52.1 52.6  45.2 46.7 52.8  53.3 
30-min 1.5 44.2 44.5 55.7 55.5 43.0 43.3 57.0 56.7  
40-min 1.5 44.7 44.1 55.3 55.9 48.8 48.6 51.2 51.4 
55-niin 1.5 47.5 47.5 52.5 52.5  47.1 46.9 52.9 53.1 
60+10(70)-min 1.5 47.1 46.2 52.9 53.8 44.8 44.7 55.2 55.3 
60+10+10 0.75 47.1 46.6 52.9  53.4 45.4 45.7 54.6 54.3 
(80)-min 

45.0  

54.6 

20-hour 1.5 46.1 46.0 53.9 54.0 45.0  42.6 55.0 57.4 
I.E. whey sol. 0.75 4.3 2.8 95.7 97.2 4.8 5.2 95.2 94.8 
casein 

100-hour W 1.5 46.2 46.1 53.8 53.9 43.8 44.5 56.2  55.5 
100-hour U¥ 1.5 49.9 49.6  50.1 50.4 48.1 47.9 51.9 52.1  
a -casein 0.5 95.8 4.2 95.8 4.2 
I.E. casein® 1.0 49.2 49.1 50.8  50.9 49.3 48.9 50.7  51.1 
I.E. casein® 2.0 47.1 47.0 52.9 53.0 47.0 45.6 53.0 54.4 

^Transparencies correspond to the pictures in Figures 17 
and l8 (see Table 8). 

^For the method of Isolating each fraction see methods 
section pp. 42-46, 

^Densitometer zero Just ahead of the borate boundary. 

^Densitometer zero Just ahead of the ag-casein band. 

^Isoelectric casein preparation 1. 
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